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For constant and oscillating boundary conditions, the 1-D advection-diffusion 
equation with constant coefficients, which describes a contaminant flow, is solved 
by the explicit finite difference method in a semi-infinite medium. It is shown how 
far the periodicity of the oscillating boundary carries on until diminishing to be-
low appreciable levels a specified distance away, which depends on the oscilla-
tion characteristics of the source. Results are tested against an analytical solution 
reported for a special case. The explicit finite difference method is shown to be 
effective for solving the advection-diffusion equation with constant coefficients in 
semi-infinite media with constant and oscillating boundary conditions.
Key words: advection-diffusion equation, contaminant flow,  
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Introduction 

Water-pollution can often be regarded as a hydraulic mixing process with attenuating 
pollutant concentrations along the downstream transport of the waste. Such concentrations, in 
space and time, are described by the advection-diffusion equation: a PDE of the parabolic-type 
that was derived from the Fick’s diffusion laws and mass conservation principle. The advec-
tion-diffusion equation could be used, for example, to assess concentration of toxic pollutants 
downstream of mining operations and plan the remedial management of the aquatic flora and 
fauna [1]. The same advection-diffusion equation can similarly describe transport phenomena 
in a variety of other disciplines such as chemical and petroleum engineering, biophysics, or 
soil-physics [1]. 

Various numerical and analytical methods are used for solving advection-diffusion 
equation, such as finite difference methods (FDM), finite element methods (FEM), and finite 
volume methods (FVM) – naturally, all three discretize governing equations and initial and 
boundary conditions. Even in 1-D, this equation has been solved only for cases with special ini-
tial and boundary conditions [1-6]. These are unlikely to match most engineering problems in 
practice [7-10]. While the numerical methods employ various discretization schemes [11-14], it 
is generally accepted that FEM may be better suited for complex 3-D geometries whereas 1-D 
problems are more easily solved by FDM.
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Time varying boundary concentrations are clearly of interest for realistic applications 
[15]. For example, the intensity of the pollution source (at x = 0) may be a periodic function of 
time. An analytical solution of the advection-diffusion eq. (2) does not exist for such pulsating 
pollution sources, necessitating a numerical solution. In this paper, the 1-D advection-diffusion 
equation with constant coefficients is solved by the explicit FDM (EFDM). The solution is 
given for the solute transport in a semi-infinite medium that is solute free initially and with: 
constant boundary conditions and oscillating (periodic in time) concentration at one of the two 
boundaries. To the best of authors knowledge for the first time, we propose in this paper an 
effective, accurate and most simple explicit finite difference scheme for solving advection-dif-
fusion equation for a contaminant transport with oscillating concentration at one of the two 
boundaries.

The governing equation

For the downstream transport of the solute particles in the longitudinal direction  
x (0 )x≤ < ∞ , the governing advection-diffusion partial differential equation is 1-D [16]:

	 ( , ) ( , )( , ) ( , ) ( , )C x t C x tD x t u x t C x t
t x x

∂ ∂ ∂ = − ∂ ∂ ∂ 
	 (1)

In eq. (1), the solute concentration is denoted by C(x,t). It is a function of time, t, and 
position x along the longitudinal direction of dispersion. Mathematically, the PDE (1) has dual 
nature: hyperbolic for advection-dominated problems and parabolic for dispersion dominated 
ones. For the latter, the constant D represents a dispersion coefficient; a fixed u indicates that 
the flow velocity is uniform. 

For constant D and u, eq. (1) reduces to:

	
2

2
( , ) ( , ) ( , )C x t C x t C x tD u
t xx

∂ ∂ ∂
= −

∂ ∂∂
	 (2)

The domain is semi-infinite and solute free initially, meaning that the initial condition is: 

	 ( , ) 0 0, 0C x t x t= ≥ = 	 (3)

Two kinds of boundary conditions are analyzed: constant and periodically fluctuating. 
For the former case (constant boundary condition), it is:

	 0( , ) , 0, 0C x t C x t= = ≥ 	 (4)

	 ( , ) 0, , 0C x t x t= →∞ ≥ 	 (5)

Equation (2) has been solved analytically for such constant boundary conditions [17]:

	 0( , ) erfc exp erfc
2 2 2

C x ut ux x utC x t
DDt Dt

 − +    = +     
     

	 (6)

In the case of a periodic fluctuation of concentration at the boundary x = 0, the expres-
sion (4) can take the following form:

	 0( , ) [1 sin( )], 0, 0C x t C t x tε ω= + = ≥ 	 (7)

where ε  is the magnitude and ω  is the frequency of the concentration oscillations. The 
boundary condition at x →∞  remains the same as in eq. (5). For such oscillatory boundary 
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condition (7) (with 0ε ≠ ), the advection-diffusion eq. (2) must be solved numerically because 
an analytical solution has not been reported. 

Numerical method

Analytical solutions of advection-diffusion equations have been reported for specific 
initial and boundary conditions. This restriction, compounded with their complexity, limits 
their applicability. Numerical methods, on the other hand, are generally applicable with arbi-
trary initial and boundary conditions [18-20]. In the 1970's and 1980's, implicit FDM (IFDM) 
were generally preferred over explicit ones (EFDM). This trend has been changing with the ad-
vancement of computers, shifting the emphasis to EFDM. Being often unconditionally stable, 
the IFDM allows larger step lengths. Nevertheless, this does not translate into IFDM’s higher 
computational efficiency because extremely large matrices must be manipulated at each calcu-
lation step. We find that the EFDM is also simpler in addition to being computationally more 
efficient [19, 21]. 

For 0ε = in eq. (7), the analytical solution of the advection-diffusion eq. (2) is given 
in eq. (6). In the case of 0ε ≠ , the analytical solution of the advection-diffusion eq. (2) is not 
known. In order to test our numerical method (EFDM), we first solve the advection-diffusion 
eq. (2) with constant boundary conditions (4) and (5). The central difference scheme is used to 
represent the term 2 2[ ( , )/ ]C x t x∂ ∂  and [ ( , )/ ]C x t x∂ ∂  and a forward difference scheme for the 
derivative term [ ( , )/ ]C x t t∂ ∂  [21]. With these substitutions, eq. (2) transforms into:

	 , 1 1, , 1,2 2 21 2
2 2i j i j i j i j

D t u t D t D t u tC C C C
x xx x x+ − +

∆ ∆ ∆ ∆ ∆     = + + − + −     ∆ ∆∆ ∆ ∆     
	 (8)

where , ( , )i j i jC C x t≡ , indexes i and j refer to the discrete step lengths ∆x and ∆t for the co-or-
dinate x and time t, respectively, such that ix i x= ∆  and jt j t= ∆ . Equation (8) represents a 
formula for , 1i jC +  at the (i, j + 1)th mesh point in terms of known values along the jth time row. 
The truncation error for the difference eq. (5) is O(∆t, ∆x2). Using a small-enough value of  
∆t and ∆x, the truncation error can be reduced until the accuracy achieved is within the error 
tolerance [21].

The initial condition (3) for eq. (2) can be expressed in the finite difference form:

	 ,0 0, 0, 0iC x t= ≥ = 	 (9)

Boundary conditions (4) and (5), rewritten in the finite difference form:

	 0, 0 , 0, 0jC C x t= = ≥ 	 (10)

	 , 0, , 0N jC x x t∞= → ≥ 	 (11)

where N = x∞/∆x is the grid dimension in the x direction and x∞ is the distance in the direction 
x at which ( , ) 0C x t∂ = , x∞  replaces x →∞ in eq. (6). In the case of periodic boundary condi-
tion (7), it can be rewritten in the finite difference form:

	 0, 0[1 sin( )], 0, 0j jC C t x tε ω= + = ≥ 	 (12)

In this manner, solute concentration can be determined at different times. A typical 
solution run takes up to 7 seconds on the Intel (R) Core (TM) i3 CPU 540 at 3.07 GHz personal 
computer for the longest time analyzed (50 day).
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Results

Figures 1-3 show EFDM solutions of the advection-diffusion eq. (2) with constant 
boundary condition (4) at x = 0. The flow velocity used is u = 1 m per day and the dimensionless 
source concentration was C0 = 10. Solute transport problems for D = 0.1, 2.5 and 10 m2 per 
day were considered [17]. In the case of constant boundary condition (5), the concentrations at 
time t equal to 5, 10, 20, 30, 40, and 50 days are computed by EFDM and analytically (6). The 
EFDM numerical results shown in figs. 1-3 agree well with the analytical solutions, both for the 
advection-dominated cases, figs. 1 and 2, and the high-dispersion case, fig. 3. 

Figure 1. Numerically calculated concentration 
distributions at different times (solid lines) for  
D = 0.1 m2/day and u = 1 m/day shown in 
comparison to analytical results (solid squares)

Figure 2. Numerically calculated concentration 
distributions at different times (solid lines) for  
D = 2.5 m2/day, u = 1 m/day shown in 
comparison to analytical results (solid squares)
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The concentration values are shown in 
these figures as functions of the longitudinal 
direction x at different times. We used 

200x∞ = m in eq. (6) (for both cases) to repre-
sent the distance wherefrom there is no fur-
ther change in the concentration C(x,t). Larger 
values for x∞ do not affect the solution appre-
ciably while unnecessarily enlarging the size 
of the grid and increasing the computation 
time. Since the stability conditions of the fi-
nite difference scheme (8) are 0 ≤ DΔt/Δx2 ≤ 
≤ 0.5 and 20 / 2(1 / )u t x D t x≤ ∆ ∆ ≤ − ∆ ∆ , the 
step lengths were ∆x = 0.1 m and ∆t = 0.001 
day for D = 0.1, 2.5 m2 per day, and ∆x =  
= 0.1 m and ∆t = 0.0005 day for D = 10 m2 per 

day. The analytical solution (6) of the advection-diffusion eq. (2) is represented by filled squares 
in figs. 1-3. As the dispersion coefficient increases from 0.1 in fig. 1 to 2.5 in fig. 2, and 10 in 
fig. 3 m2 per day, the solute distribution narrows among these figures and tails-off at greater 
distance along the x-axis for the dispersion dominated case in fig. 3 relative to the advection 
dominated processes in figs. 1 and 2. 

While the numerical and analytical results match closely, a measure of this match is 
evaluated by the mean square error defined as:

Figure 3. Numerically calculated concentration 
distributions at different times (solid lines) for  
D = 10 m2/day, u = 1 m/day shown in comparison 
to analytical results (solid squares)
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	 ( )2num analyt

1

1error
N

i
i

C C
N =

= −∑ 	 (13)

where N is the total number of observation points. Errors in solute 
concentration shown in fig. 3 (for D = 10 m2 per day and u = 1 m/s) 
and calculated by (13) are given in tab. 1 at t = 10 to 50 days (the 
longest time analyzed). The error values increase with time, so the 
maximum deviation between the results obtained between analyt-
ical and numerical solutions over a 50-day period is ≈ 0.002%.

For the periodic boundary condition (7), solute transport 
problems for D = 10 m2 per day is considered for two oscillation 
amplitudes ε  = 0.15 and 0.5 and frequency /2ω = π . Figures 4 and 
5 show concentrations at time t equal to 5, 10, 20, 30, 40, and 50 
days, computed by EFDM for ε  = 0.15 and 0.50, respectively. 
Figure 6 shows concentration at distance x equal to 1, 10, and 15 m 
for ε  = 0.15 and fig. 7 shows concentration at distance x equal to 
1, 10, and 20 m for ε  = 0.50. The solute concentration near the 
boundary x = 0 (small x) is clearly affected by the periodicity of the 

Table 1. Errors in solute 
concentration shown in  
fig. 3 at t = 10 to t = 50 days 
(the longest time analyzed)

t [day] error
1 0.00000012
5 0.00000067
10 0.00000257
20 0.00000559
30 0.00000775
40 0.00000909
50 0.00002041
60 0.00003055
70 0.00004045

x [m]

C

x [m]

CD = 10 m2/s
u = 1 m/s
ε = 0.15 
ε = π/2 

D = 10 m2/s
u = 1 m/s
ε = 0.5 
ε = π/2 

t = 5 day
t = 10 day
t = 20 day
t = 30 day
t = 40 day
t = 50 day

t = 5 day
t = 10 day
t = 20 day
t = 30 day
t = 40 day
t = 50 day

Figure 4. Numerically calculated concentration 
distributions at different times for D = 10 m2/day,  
u = 1 m/day, ε  = 0.15 and = /2ω π

Figure 5. Numerically calculated concentration 
distributions at different times for D = 10 m2/day,  
u = 1 m/day, ε  = 0.5 and = /2ω π
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Figure 6. Numerically calculated concentration 
distributions at different positions for  
D = 10 m2/day, u = 1 m/day, ε  = 0.15 and = /2ω π

Figure 7. Numerically calculated concentration 
distributions at different positions for  
D = 10 m2/day, u = 1 m/day, ε  = 0.5 and = /2ω π
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forcing function (12). Such periodicity diminishes with distance away from the x = 0 boundary 
and is practically unnoticeable at x = 15 m for the case shown in fig. 6 or at 20 m for the case 
shown in fig. 7. The distance range within which the oscillating boundary effects the time-evo-
lution of the solute concentration is assessable in figs. 4 and 5. The effect is more pronounced 
for larger oscillation amplitudes when these oscillations at boundary x = 0 are detectable at 
greater distances. 

Conclusion

We report on the finite difference solution of the 1-D advection-diffusion equation 
with constant coefficients in semi-infinite media for solute transport with constant and periodic 
boundary conditions. High accuracy of the method is apparent from the comparison of numer-
ical results with those obtained with analytical solutions that are available for special cases. 
Furthermore, the EFDM presented in this work for solving advection-diffusion equation is the 
simplest among other commonly used numerical methods. It is shown that, for given oscillation 
frequency, the periodically oscillating boundary concentration (at x = 0) significantly influences 
the time-evolution of the concentration distribution near this boundary. This influence is more 
pronounced for larger amplitude of the oscillating boundary concentration. We have shown that 
explicit finite difference method is effective and accurate for solving 1-D advection-diffusion 
equation with constant coefficients in semi-infinite media, which is especially important when 
arbitrary initial and boundary conditions are required. Similarly, in our previous work, we have 
also shown that explicit finite difference method is effective and accurate for solving two-di-
mensional solute transport problems [22].
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