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Dimension or scale is everything. When a thing is observed by different scales, 
different results can be obtained. Two scales are enough for most of practical 
problems, and a new definition of a two-scale dimension instead of the fractal 
dimension is given to deal with discontinuous problems. Fractal theory considers 
a self-similarity pattern, which cannot be found in any a real problem, while the 
two-scale theory observes each problem with two scales, the large scale is for an 
approximate continuous problem, where the classic calculus can be fully applied, 
and on the smaller scale, the effect of the porous structure on the properties can be 
easily elucidated. This paper sheds a new light on applications of fractal theory to 
real problems. 
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Introduction 

The analysis of fractal objects has grown increasingly during last decades. Fractal 

theory and fractal patterns are being used by diverse scientific areas, for examples, computer 

graphics, geological media, medical imaging, and biology. It would not be wrong to say that 

everything in the universe is fractal. Each particle in the universe, no matter how small, is so 

extremely complex that any an attempt to unveil something supposed to be fundamental will 

certainly reveal more complexities. Mathematical fractals are mostly derived from some con-

struction process iterated up to infinity, for examples, Koch curve and Cantor set. Natural 

fractals are approximately fractals that occur in nature, for example, porosity of fabrics and 

soil, the cost of Brittany. Natural fractals resemble themselves roughly at all level of resolu-

tion, and their level of complexity becomes greater with each step. 

The fractal geometry was proposed by Mandelbrot [1], this influential idea has con-

tributed remarkably to mathematics and has found many practical applications from social 

science, economics to engineering, and life. Fractal is mathematically beautiful and physically 

imperative to deal with discontinuous problems, such as heat conduction through a porous 

medium or a hierarchical structure [2-10]. Many hierarchical structures can be approximately 

considered as fractals though they are not, a porous medium is always considered as a fractal 
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space though it is not. This fractal assumption in practical applications leads to some but not 

all useful results. During design of a hierarchical structure using the fractal theory, it is diffi-

cult to determine the last cascade due to restrictions from cost and technology, so a modified 

fractal theory is much needed to deal with real problems. 

Two-scale dimension 

Dimension or scale is everything, different scales result in different results or laws 

for a same phenomenon. We begin with a blackboard demonstrating that physics laws are 

different at different levels of observation. The blackboard can be zero-dimensional if we ob-

serve it on the Sun, it can be also 1-D if we measure it by the scale of its length. It becomes 

unsmooth on an extremely small scale, saying 100 nm, and fractal dimensions have to be 

used.  

We always use a map to find the origin-to-destination line. Figure 1(a) shows the 

origin-to-destination distance is 760 m on a scale of 100 m, but when we see the map on a 

scale of 5 km, as shown in fig.1(b), the origin-to-destination line becomes a point. 

Scale-dependent laws work only on an assumed scale. Water on any observation 

scales is continuous, and the continuum mechanics works, however, water becomes discon-

tinuous on a molecule scale. The continuum mechanics cannot describe a molecule’s motion 

in water, it is chaotic though its motion is determinate on the molecule scale. Uncertainty oc-

curs when a wrong scale is used. We, therefore, need a new mathematical tool to deal with the 

two-scale problems instead of the fractal dimension. 

For a fractal geometry, the fractal dimension is defined: 

ln

ln

N
D

M
          (1) 

Figure 1. The origin-to-destination line on different scales; (a) the scale bar is 100 m, 

(b) the scale bar is 5 km 
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where M = L/l, L and l are two scales, on the larger scale, we have a unit, while on the smaller 

scale, the units are N. 

However, many practical problems lack a self-similarity structure. Just consider a 

cloth, it is 2-D on a large scale, however, when it is observed on a small scale, its warp-weft 

structure can be seen. If we want study the effect of warp-weft structure on the air permeabil-

ity, we have to use the small scale. The cloth is far from mathematical fractal, so it is neces-

sary to give a new definition for dimension. 

The two-scale dimension is defined: 

0

0

V

V
           (2) 

where  is the two-scale dimension for the small scale, 0 – the dimension for the large scale, 

for the cloth, 0 = 2, V /V0 – the measured ratio using two different scales. 

For the first iteration of the Koch curve, see fig. 2(a), 0 = 1, the two-scale dimen-

sion can be calculated: 

0
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V
              (3) 

while the fractal dimension for Koch curve is: 

ln 4
1.261

ln 3
D             (4) 

For the first iteration of Sierpinski carpet, see fig. 2(b), 0 = 2, the two-scale dimen-

sion can be calculated: 

0

0

8
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9
1.77

V

V
              (5) 

while the fractal dimension for the Sierpinski carpet reads: 

ln8

ln 3
1.892D             (6) 

The small difference in the values of dimension calculated from two different defi-

nitions is evidence of effectiveness of new definition though there is no apparent relation be-

tween two estimators, i. e., 1.33 > 1.23 for Koch curve and 1.77 < 1.89 for Sierpinski Carpet. 

Figure 2. First iteration of the Koch curve (a), the Sierpinski carpet (b), and second iteration of the 

Sierpinski carpet (c) 
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The two-scale dimension is, however, purely a physical property without any useless mathe-

matical interference. It simply provides the ratio of complexity of given discontinuous pattern 

between two adjacent different scales of observation.  

To further illustrate the physical understanding of the two-scale dimension, we con-

sider a magic game. The magic uses actually two scales of time, one is larger, the other is 

smaller. Our eyes can determine a motion of 24 pictures per second, faster than the threshold, 

the eyes see nothing, this is the magic! 

Application 

We consider heat conduction through a porous medium as illustrated in fig. 3. For 

simple illustration, 1-D Fourier's law is used in this paper. The local heat flux density reads: 

T
q k

x





         (7) 

where q is heat flux density, k – the thermal conductivity, T – the temperature. The heat equa-

tion for a continuous medium can be written in the form: 

T T
k

t x x

   
  

   
          (8) 

For a porous medium, a fractal 

modification of the Fourier's law has 

to be made, and eq. (7) is modified: 

T
q k

x





     (9) 

where  is the two-scale dimension, 

T/x

 – the fractal derivative defined 

[11, 12]: 
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where x0 is the smallest scale beyond 

which there is no physical under-

standing. For the air permeability of a 

cloth, x0 is the porous size of the warp-weft structure, for a porous medium, x0 can be the 

smallest porosity size, smaller than this size, the effect on heat conduction is ignored. 

For 1-D heat conduction through a porous medium, the two-scale dimension can be 

calculated: 

eq eq

0

L L

L L
             (11) 

where Leq is illustrated in fig. 3 and L is the length of the porous tube. As Leq is difficult to be 

measured, we use the following formula to calculate the two-scale dimension: 

porosity

V

V V
 


          (12) 

where V is the total volume of the tube and Vporosity is the porosity volume. The heat equation in 

a porous medium can be written: 

Figure 3. Heat conduction through a porous medium 
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In [13, 14] the following transform is used: 

s x           (14) 

We can call it as the two-scale transform, where x can be considered as a small 

scale, while s is the large scale. Using the two-scale transform, eq. (12) becomes: 

T T
k

t s s

   
  

   
         (15) 

It is exactly same as eq. (8) for continuous medium. We give the following explana-

tion: for the large scale, the problem can be approximately considered as a continuous prob-

lem, but it cannot study the effect of the porosity patterns on the heat property and for the 

small scale, the fractal calculus has to be used, and it can elucidate the effect of porous struc-

ture on the heat conduction property. 

Discussion and conclusion  

For the very first time ever, we propose an alternative definition of fractal dimension 

that is the two-scale dimension. As the dimension is everything in our every study, when you 

observe our Earth from an infinite far point, it becomes a point though it is large enough in 

our observation. Newton’s gravity considers the Earth as a point, so it cannot deal with the 

earthquake. When we study a problem, the scale used is of great importance. For example, if 

we want to study the effect of the warp-weft structure on the cloth’s properties, we have to 

use the scale that can measure the warp-weft structure, below the scale, any effect is ignored. 

If we want further study the effect of the yarn structure on the cloth’s properties, we have to 

use a much smaller scale that can measure the fiber diameter, and we can use three-scale di-

mension, which we will discuss the definition in a forthcoming paper. 

Now we return the second iteration of the Sierpinski carpet as shown in fig. 2(c), the 

two-scale dimension is: 

0
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while its fractal dimension keeps unchanged, that is: 

ln 64
1.892

ln 9
D           (17) 

If we consider the second iteration of the Sierpinski carpet, it will be something like 

a porous medium, it is of course different from that of the first iteration of the Sierpinski car-

pet given in fig. 1(b), so the two-scale dimension should be different. 

Natural phenomena should follow simple laws, which should be of mathematical 

simplicity when interpreted, and unnecessary assumptions should be completely avoided. A 

tree is of hierarchical structure, it is not a mathematical fractal, each adjacent cascade have 

inherent bio-functions. If we consider a tree is a fractal pattern, some hidden pearls cannot be 

revealed. If we want to unveil the life secret of the Kleiber’s 3/4 law, we have to reject the 

Rubner’s law if only the metabolic rate is considered, however, if we view the life on a cell 

scale, and the cell is non-smooth, the Rubner law becomes totally valid again [15]. The spider 



Ain, Q. T., et al.: On Two-Scale Dimension and Its Applications 1712 THERMAL SCIENCE: Year 2019, Vol. 23, No. 3B, pp. 1707-1712 

silk’s mechanical properties cannot be explained by the continuum mechanics, but its hidden 

secret can be fully revealed on a molecule scale [16], where the geometric potential [17-19] 

works. 

In this paper, we, therefore, have critically re-conceptualized the method in which 

the fractal dimension is commonly calculated, revealing that the inherently dull process of 

calculation induces the impractical mathematics. This situation opens door to either wrong or 

meaningless results. We have developed a simple and physical model for the fractal dimen-

sion with simple definition but physical meaning. The original idea given in this paper sheds a 

new light of applications of fractal to real problems without unnecessary assumptions.  
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