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Technical systems are important systems frequently used by applied sciences. 
Proper operation of technical systems is very important. Therefore, the statistically 
calculated reliability of a technical system is an important indicator for the system. 
Technical systems occur in different structures depending on the connection types 
of the components that constitute the system. The connection diagrams of compo-
nents can be encountered in a highly complex situation. In such cases, the reliabil-
ity of the system is difficult to calculate. There is no single method in the literature 
to calculate the reliability of a technical system. The methods in the literature differ 
according to the connection types of the systems. In this study, a method and a 
MATLAB program have been proposed for calculating the reliability of k-out-of-n 
F systems and consecutive k-out-of-n F systems. The proposed method can also be 
used for different connections.
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Introduction

The reliability of the k-out-of-n F systems was successfully calculated in the early 
periods of the literature on the analysis of technical systems. When the distributions of the 
components of the system are given in the calculation, the distribution of the tth order statistic 
is sufficient to calculate the reliability of the system. The reliability of consecutive k-out-of-n 
F systems can be calculated using the system signature. A consecutive k-out-of-n F system 
consists of an ordered sequence of n components such that the system fails if and only if at 
least k consecutive components fail. The first report for this system was presented by [1]. For 
further references [2-9]. A closed recurring water supply system with n water pumps in a ther-
mo-electric plant and vacuum system in an electronic accelerator are good examples for con-
secutive-k-out-of-n F system. The following illustrative example is presented [10, 11]. In the 
related literature, system signature and order statistics are used together in the calculation of the 
reliability of technical systems. There are many studies in the literature on the system signature. 
In these studies, different methods of calculating the system signature can be seen. The system 
signature of a technical system consisting of independent n components is a probability vector 
with n components. The kth component of the vector shows the possibility that the kth failed 
component will fail the system. Let Si = (s1, s2,...sn) be the system signature of system consist-
ing of independent n components. The reliability of the system is defined by the probability of  
R = P{U > t}at time t > 0. This probability can be calculated [12]:
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where Uin is the order statistics of lifetimes of the components, U is the lifetimes of the system, 
and F(t) is the common distribution of the lifetimes of the components. Let X be working time 
of the component. The q = F(t) = Pr{X < t} shows the probability of the components’ failure 
at time t > 0 while p = 1 – F(t) = Pr{X > t} indicates the probability of the components’ oper-
ation. For example, the system signature of a technical system consisting of parallel connect-
ed n components is S = (0,...0, 1) and its reliability R = 1 – qn is from the previous equation. 
The system signature of a technical system consisting of serial connected n components is  
S = (1, 0,...0) and its reliability is calculated as R = pn. In this example, the reliability of the 
components is expressed as probability independently at time.

Technical systems under stress

Continuous operating times of technical systems in real applications are not only as-
sociated with the operating times of the components that make up the system. A system that 
will start to work for the first time has a operating life calculated with the help of various tests 
during the production phase. However, this period may be less than expected as a result of ex-
ternal pressures from the start of the operation of the system. Therefore, the average operating 
time of the system should be calculated taking into account the stress to which it is exposed. 
These types of technical systems are called stress-strength models. Stress-strength models have 
an important position in reliability analysis. In this model, the reliability of the system is repre-
sented by the variable, Y, which shows the durability of the system, and the variable, X, which 
indicates the stress applied to the system, with the probability of Pr{X < Y}. There are many 
studies on stress-durability models in the literature. Some results on reliability estimate for 
the case where the multiple number of variable operating pressure by given [13]. Studies for 
stress-durability models on samples with multivariate exponential Weinman distribution con-
ducted [14]. More information about the developments in this area provided [15]. In addition, 
the model is discussed for systems consisting of several components. The operating systems in 
a system consisting of n components where the minimum component k exceeds a common X 
stress studied [16]. Taking into consideration the risk of operating under stress of the compo-
nents, the operation probability of the system is calculated [17].

System reliability studies show that both the components and the system-related 
stress and endurance random variables change over time, which brings a more realistic ap-
proach to system reliability. For example, the average life span when used in groundwater 
extraction of a water pump and the average life expectancy when used in salt water is differ-
ent. The effect that causes this difference is the pressure applied of salt water to the operating 
system.

 Hazard function has an important role in the systems under stress. The Hazard func-
tion refers to the risk of purification of a running system. For more information about the Haz-
ard function [18]. 

Hazard ratio can be obtained with the help of the distribution function that represents 
the operating time of a technical system. If the hazard rate is known, the distribution function:
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Let us show the performance of the technical system with Z(t). The following p(t) 
probability will indicate the possibility of the system running forwards:
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Here, H(t) = Pr{Z(t) < t} is the probability. As a result, the probability of p(t):
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The importance of this review in systems operating under stress is that the λ(t) 
hazard ratio under stress can be chosen more easily depending on the system. For example  
λ(t) = 1/(EY – EX), can be selected under the assumption that the mean of stress and durability 
has changed over time. This case will directly reflect the average operating time of the technical 
system.

Different parameters are not widely used in the literature to examine different techni-
cal systems. Hazard ratio can be used in different ways to calculate important indicators of tech-
nical systems. The odds ratio with similar thinking can also be used to calculate the reliability 
of the technical system. Here, if we design the odds ratio as the ratio of the probability that the 
system will fail to operate, we create an important parameter for the system.

Survival signature

The system signat ure is an important parameter for the reliability of technical sys-
tems in the literature. However, the components of the technical system must have the same 
distribution in order to identify the system signature. Otherwise the system signature becomes 
meaningless. When the recent studies in the literature are followed, it has been shown that 
a parameter similar to the system signature, survival signature, can be defined for technical 
systems consisting of components with different distribution. The use of survival signature is 
not only as practical as a system signature, but it is an important material for technical systems 
with different distribution components. For the creation of survival signature, the possible com-
ponents are formed by grouping the components with different distributions. Suppose there 
is K different distribution in a technical system. Let us show the number of components with 
the same distribution as mk, k = 1,...,K. Let us show the number of machines that work with  
lk, k = 1,...,K. When the system is in the L = (l1,...,lK) state, let us show the probability of the 
system’s operation by Φ(l1,...,lk). Let us show the set of state vectors of k type components with 
Sk

lk. Let us show all the state vectors of the components that make up the technical systems with  
Sl1,...lK. The technical system’s reliability, including the structure function 𝓁 of the technical sys-
tem:
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Here, C kt  and Φ(L) show the number of components t running from the k type compo-
nents and the survival signature, respectively:
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It seems that, the fact that the components that make up the system in a technical 
system have different distributions make the calculation of the system reliability quite difficult. 
In the next section, we give a different technique to be used in technical systems consisting of 
components with different distributions.

Combining process

Let q be the probability of failure of the systems. In order to combine two technical 
systems connected in parallel or in serial, u = q/p ratios of the systems have been used. In case 
of parallel and serial connection, the combined process can be made according to the following 
equations:
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( ),sf u v uv u v= + + (8)
where u and v are the q/p ratio of the first and second systems, respectively. After all the com-
bined processes, 1 – F = p = 1/(1 + u) is the reliability of the system obtained from the q/p ratio. 
Mean time to failure:

0

dMTTF p t
∞

= ∫ (9)

Illustrative example

Let 𝓁 = min{max{A1, A2}A3} be the con-
nection of three different systems. In this ex-
ample, let A1, A2, A3 be 3-out-of-5 F, consec-
utive-3-out-of-5 F, and 4-out-of-6 F systems, 
respectively. Let distribution of each compo-
nents of the systems be as Exp(0.1). In this 
case, the mean time to failure of the system can 
be calculated as MTTF = 6.9486. The graph of 
the reliability of the system according to time 
can be obtained fig. 1.

The program used in the calculations is 
given in the Appendix.

Conclusion

Calculation of the mean time to failure of a technical system whose connections are 
highly complex is quite important for the reliability of the technical system. The results of 
the study and the program used are very important in terms of examining complex technical 
systems. In the example, three different technical systems have been combined according to 
the 𝓁 rule and the reliability of the system has been calculated according to time. In addition, 
the mean time to failure of the 𝓁 system has been obtained with the help of numerical integral 
calculus.
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Figure 1. The reliability of the system according 
to time
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Appendix
%l-out-of-n F system
n=input(‘n=?’)
l=input(‘l=?’)
%consecutive k-out-of-m F system
m=input(‘m=?’)
k=input(‘k=?’)
%ll-out-of-nn F system
nn=input(‘nn=?’)
ll=input(‘ll=?’)
mttf=0;pson=0;t=(0:0.1:25);
A1p=zeros(1,length(t));u1=zeros(1,length(t));
A2q=zeros(1,length(t));u2=zeros(1,length(t));
A3p=zeros(1,length(t));u3=zeros(1,length(t));
u12=zeros(1,length(t));u=zeros(1,length(t));
p=zeros(1,length(t));q=zeros(1,length(t));
Ap=zeros(1,l);App=zeros(1,ll);
for i=1:length(t)
 q(i)=1-exp(-0.1*t(i));
 p(i)=1-q(i);
end
for i=1:length(t)
 for j=1:l
 Ap(j)=nchoosek(n,j-1)*q(i)^(j-1)*p(i)^(n-j+1);
 end
 A1p(i)=sum(Ap);
 Ap=zeros(1,l);
 u1(i)=(1-A1p(i))/A1p(i);
end
for i=1:length(t)
 A2q(i)=(m-k+1)*q(i)^k;
 u2(i)=A2q(i)/(1-A2q(i));
end
for i=1:length(t)
 for j=1:ll
 App(j)=nchoosek(nn,j-1)*q(i)^(j-1)*p(i)^(nn-j+1);
 end
 A3p(i)=sum(App);
 App=zeros(1,ll);
 u3(i)=(1-A3p(i))/A3p(i);
end
for i=1:length(t)
 u12(i)=((1/u1(i))*(1/u2(i))+1/u1(i)+1/u2(i))^(-1);
end
for i=1:length(t)
 u(i)=(u12(i))*(u3(i))+u12(i)+u3(i);
end
for i=1:length(t)
pson(i)=1/(1+u(i));
end
mttf=(sum(pson))*0.1
plot(pson)
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