ON SOLUTIONS OF LOCAL FRACTIONAL SCHRODINGER EQUATION

by

Resat YILMAZER* and Neslihan S. DEMIREL

Department of Mathematics, Firat University, Elazig, Turkey

Original scientific paper https://doi.org/10.2298/TSCI190130353Y

In this study, we obtain the solution of a local fractional Schrodinger equation. The solution is obtained by the implementation of the Laplace transform and Fourier transform in closed form in terms of the Mittag-Leffler function.

Key words: local fractional calculus, Laplace transforms, Fourier transform, Schrodinger equations

Introduction

Fractional analysis has much applications in diverse fields of science and engineering; such as, statistics, control theory, optics, quantum mechanics, traffic flow, *etc*.

Fractional analysis arises in much problems of physics [1, 2], continuum mechanics [3], visco-elasticity [4, 5], quantum mechanics [6-8], and other branches of applied mathematics [9-13]. However, these spherical defined fractional derivatives do not usually project the local geometric behaviours for a given function. Attempts have been made recently [14-19] to define a local version of the fractional derivative and integral. Also, local fractional (LF) analysis was extended to LF Fourier series [20, 21], Yang-Fourier transform (FT) [21-25], Yang-Laplace transform (LT) [20, 25, 26], discrete Yang-FT [23, 27]. The LF diffusion equation with local fractional PDE was researched in [28, 29]. The LF wave equation and non-linear fractional wave-like equations was investigated in [30, 31].

The local fractional Schrodinger equation (LFSE) in (1+1)-fractal dimensional space:

$$i^{\varepsilon}\hbar_{\varepsilon}\frac{\partial^{\varepsilon}u(x,\tau)}{\partial\tau^{\varepsilon}} = -\frac{\hbar_{\varepsilon}^{2}}{2\mu}\frac{\partial^{2\varepsilon}u(x,\tau)}{\partial\tau^{2\varepsilon}}$$
(1)

where the wave function $u(x, \tau)$ is local fractional continuous (LFC) function, μ and h_{ε} are constants.

In this article our aim is to investigate the non-differentiable solutions for LFSE by using the local fractional LT method.

Preliminary and properties

In this portion, we introduce some mathematical preliminaries calculus theory in fractal space for our next progress [21, 22, 32].

Let $\psi : \chi \to \varsigma$ be a function defined on a fractal set χ of fractal dimension $\sigma(0 < \sigma \le 1)$. A real valued function $\psi(r)$ defined on the fractal set χ is given:

^{*}Corresponding author, e-mail: rstyilmazer@gmail.com

$$\Psi(r) = r^{\sigma}, \quad r^{\sigma} \in \chi \tag{2}$$

The Mittag-Lefler function (MLF) defined on the fractal set χ is given:

$$E_{\sigma}\left(r^{\sigma}\right) = \sum_{n=0}^{\infty} \frac{r^{n\sigma}}{\Gamma\left(1+n\sigma\right)}, \quad r \in \mathbb{R}, \ 0 < \sigma \le 1$$
(3)

Definition 1. If there exists:

$$\left|\psi\left(r\right)-\psi\left(r_{0}\right)\right|<\varepsilon^{\sigma}\tag{4}$$

with $|r - r_0| < \delta$, for ε , $\delta \in \mathbb{R}^+$, then $\psi(r)$ is called LFC at $r = r_0$ and it is denoted:

$$\lim_{r \to r_0} \psi(r) = \psi(r_0) \tag{5}$$

Suppose a function $\psi(r)$ is LFC on the interval (a, b) then:

$$\psi(r) \in C_{\sigma}(a,b) \tag{6}$$

Definition 2. Let $\psi(r) \in C_{\sigma}(a, b)$. The LF derivative of $\psi(r)$ of order σ at $r = r_0$ is given:

$$\psi^{(\sigma)}(r_0) = \frac{d^{\sigma}}{dr^{\sigma}}\psi(r)\bigg|_{r=r_0} = \lim_{r \to r_0} \frac{\Delta^{\sigma} \left[\psi(r) - \psi(r_0)\right]}{\left(r - r_0\right)^{\sigma}}$$
(7)

where

$$\Delta^{\sigma} \left[\psi(r) - \psi(r_0) \right] \cong \Gamma(1 + \sigma) \left[\psi(r) - \psi(r_0) \right]$$

with the Gamma function:

$$\Gamma(1+\sigma) = \int_{0}^{\infty} r^{\sigma-1} \exp(-r) dr$$
(8)

The LF partial derivative operator of $\psi(r, t)$ of order $\sigma(0 \le \sigma \le 1)$ with respect to t in the domain χ :

$$\psi^{(\sigma)}(r,t_0) = \frac{\partial^{\sigma}}{\partial t^{\sigma}} \psi(r,t) \bigg|_{t=t_0} = \lim_{t \to t_0} \frac{\Delta^{\sigma} \left[\psi(r,t) - \psi(r,t_0) \right]}{\left(t - t_0\right)^{\sigma}}$$
(9)

where

$$\Delta^{\sigma} \left[\psi(r,t) - \psi(r,t_0) \right] \cong \Gamma(1+\sigma) \left[\psi(r,t) - \psi(r,t_0) \right]$$

The LF derivative of k^{th} order:

$$\psi^{(k\sigma)}(r) = \frac{d^{\sigma}}{dr^{\sigma}} \dots \frac{d^{\sigma}}{dr^{\sigma}} \psi(r)$$
(10)

and LF partial derivative of k^{th} order:

$$\psi_r^{(k\sigma)}(r,t) = \frac{\partial^{\sigma}}{\partial r^{\sigma}} \dots \frac{\partial^{\sigma}}{\partial r^{\sigma}} \psi(r,t)$$
(11)

Definition 3. Let $\psi(r) \in C_{\sigma}(a, b)$. The LF integral of $\psi(r)$ of order $\sigma(0 < \sigma \le 1)$:

$${}_{a}I_{b}^{(\sigma)}\psi(r) = \frac{1}{\Gamma(1+\sigma)}\int_{a}^{b}\psi(r)(dr)^{\sigma} = \frac{1}{\Gamma(1+\sigma)}\lim_{\Delta r_{k}\to 0}\sum_{k=0}^{N-1}\psi(r_{k})(\Delta r_{k})^{\sigma}$$
(12)

S1930

where $\Delta r_k = r_{k+1} - r_k$ with $r_0 = a < r_1 < ... < r_{N-1} < r_N = b$.

Definition 4. Setting $\psi \in L_{1,\sigma}[\mathbb{R}]$ and $||\psi||_{1,\sigma} < \infty$ the local fractional LT operator of $\psi(r)$:

$$\mathcal{L}_{\sigma}\left[\psi\left(r\right)\right] = \Psi\left(s\right) = \frac{1}{\Gamma\left(1+\sigma\right)} \int_{0}^{\sigma} \psi\left(r\right) E_{\sigma}\left(-r^{\sigma}s^{\sigma}\right) \left(\mathrm{d}r\right)^{\sigma}, \quad 0 < \sigma \le 1$$
(13)

The inverse equation of the LT operator of $\Psi(s)$: \mathscr{L}

$$\mathcal{L}_{\sigma}^{-1}\left[\Psi(s)\right] = \psi(r) = \frac{1}{(2\pi)^{\sigma}} \int_{\alpha-i\infty}^{\alpha+i\infty} \Psi(s) E_{\sigma}\left(r^{\sigma}s^{\sigma}\right) (\mathrm{d}s)^{\sigma}$$
(14)

where $s^{\sigma} = \alpha^{\sigma} + i^{\sigma} \infty^{\sigma}$ and $\operatorname{Re}(s^{\sigma}) = \alpha^{\sigma}$.

Definition 5. By setting $\psi \in L_{1,\sigma}[\mathbb{R}]$ and $||\psi||_{1,\sigma} < \infty$, the local fractional FT operator of $\psi(r)$:

$$\mathcal{F}_{\sigma}\left[\psi\left(r\right)\right] = \Psi\left(w\right) = \frac{1}{\Gamma\left(1+\sigma\right)} \int_{-\infty}^{\infty} \psi\left(r\right) E_{\sigma}\left(-i^{\sigma}r^{\sigma}w^{\sigma}\right) \left(\mathrm{d}r\right)^{\sigma}$$
(15)

The inverse local fractional FT operator of $\Psi(w)$:

$$\mathcal{J}_{\sigma}^{-1} \Big[\Psi(w) \Big] = \psi(r) = \frac{1}{(2\pi)^{\sigma}} \int_{-\infty}^{\infty} \Psi(w) E_{\sigma} \left(i^{\sigma} r^{\sigma} w^{\sigma} \right) (\mathrm{d}w)^{\sigma}$$
(16)

Theorem 6 (LT). Suppose that $\psi(r) \in L_{1,\sigma}[\mathbb{R}]_+$, $\mathscr{L}_{\sigma}[\psi(r)] = \Psi(s)$, and $\lim_{r \to \infty} \psi(r) = 0$, then there is:

$$\mathcal{L}_{\sigma}\left[\psi^{(\sigma)}(r)\right] = s^{\sigma} \mathcal{L}\left[\psi(r)\right] - \psi(0) \tag{17}$$

We remark that there is:

$$\mathbf{\mathcal{L}}_{\sigma}\left[\boldsymbol{\psi}^{(n\sigma)}\left(\boldsymbol{r}\right)\right] = s^{n\sigma} \mathbf{\mathcal{L}}\left[\boldsymbol{\psi}\left(\boldsymbol{r}\right)\right] - s^{(n-1)\sigma} \boldsymbol{\psi}\left(\boldsymbol{0}\right) - s^{(n-2)\sigma} \boldsymbol{\psi}^{(\sigma)}\left(\boldsymbol{0}\right) - \dots - \boldsymbol{\psi}^{\left[(n-1)\sigma\right]}\left(\boldsymbol{0}\right)$$
(18)

where $n \in N$.

Theorem 7 (FT). Suppose that $\psi(r), \Psi(w) \in L_{1,\sigma}[\mathbb{R}], \mathcal{F}_{\sigma}[\psi(r)] = \Psi(s), \text{ and } \lim_{|r| \to \infty} \psi(r) = 0.$ Then:

$$\mathcal{F}_{\sigma}\left[\psi^{(\sigma)}(r)\right] = (iw)^{\sigma} \mathcal{F}\left[\psi(r)\right]$$
(19)

We use the slightly modified form of the previous results in our research [33, 34]:

$$\mathcal{F}_{\sigma}\left[\psi^{(\sigma)}(r)\right] = -|w|^{\sigma} \mathcal{F}\left[\psi(r)\right]$$
(20)

instead of eq. (19).

Main results

In this chapter, we will research the solution of the LFSE (1). *Theorem* 7. Consider the following 1-D LFSE:

$$\frac{\partial^{\varepsilon} u(x,\tau)}{\partial \tau^{\varepsilon}} = -\frac{\hbar_{\varepsilon}}{2i^{\varepsilon}\mu} \frac{\partial^{2\varepsilon} u(x,\tau)}{\partial x^{2\varepsilon}}, \quad x \in \mathbb{R}, \ \tau > 0, \ 0 < \varepsilon \le 1$$
(21)

with the initial conditions:

$$u(x,0) = u_0(x), \quad x \in \mathbb{R}$$

$$u(x,\tau) \to 0 \text{ as } |x| \to \infty, \quad \tau > 0$$
(22)

where \hbar is Planck constant divided by 2π , μ – the mass, and $u(x, \tau)$ – the wave function of the particle. Then, for the solution (21), under the given condition in eq. (22):

$$u(x,\tau) = \frac{1}{(2\pi)^{\varepsilon}} \int_{-\infty}^{\infty} u_0^*(w) E_{\varepsilon,\varepsilon} \left(-\kappa |w|^{2\varepsilon} \tau^{\varepsilon}\right) (\mathrm{d}w)^{\varepsilon}$$
(23)

where *E* is the MLF and $\kappa = -\hbar_{\varepsilon}/2i^{\varepsilon}\mu$.

Proof. Applying the LT according to the time variable τ on both the sides of (21) and using the initial conditions in eq. (22) and the eq. (17):

$$s^{\varepsilon}\overline{u}(x,s) - u_{0}(x) = \kappa \frac{\partial^{2\varepsilon}}{\partial x^{2\varepsilon}} \overline{u}(x,s)$$
(24)

where $\kappa = -\hbar_{\varepsilon}/2i^{\varepsilon}\mu$.

If we apply the FT according to space variable and use the eq. (20):

$$s^{\varepsilon}\overline{u}^{*}(w,s) - u_{0}^{*}(w) = -\kappa \left|w\right|^{2\varepsilon}\overline{u}^{*}(w,s)$$
⁽²⁵⁾

Solving for $\bar{u}^*(w, s)$:

$$\overline{u}^{*}(w,s) = \frac{u_{0}^{*}(w)}{s^{\varepsilon} + \kappa |w|^{2\varepsilon}}$$
(26)

To recover the function $u(x, \tau)$ from (26) it is convenient first to invert the LT and then the FT:

$$\mathcal{J}^{-1}\left[\frac{s^{\varepsilon-1}}{\gamma+s^{\sigma}};\tau\right] = \tau^{\sigma-\varepsilon} E_{\sigma,\sigma-\varepsilon+1}\left(-\gamma\tau^{\sigma}\right)$$
(27)

where $E_{\varepsilon,\sigma}(r)$ is the MLF [32]:

$$E_{\varepsilon,\sigma}(r) = \sum_{n=0}^{\infty} \frac{r^n}{\Gamma(n\varepsilon + \sigma)}, \quad (\varepsilon, \sigma \in \mathbb{C}, \operatorname{Re}(\varepsilon) > 0, \operatorname{Re}(\sigma) > 0)$$
(28)

we obtain:

$$u^{*}(w,\tau) = u_{0}^{*}(w) E_{\varepsilon,\varepsilon} \left(-\kappa |w|^{2\varepsilon} \tau^{\varepsilon}\right)$$
(29)

Now the inverse local FT leads to:

$$u(x,\tau) = \mathcal{J}^{-1} \left[u_0^*(w) E_{\varepsilon,\varepsilon} \left(-\kappa \left| w \right|^{2\varepsilon} \tau^{\varepsilon} \right); x \right] = \frac{1}{\left(2\pi \right)^{\varepsilon}} \int_{-\infty}^{\infty} u_0^*(w) E_{\varepsilon,\varepsilon} \left(-\kappa \left| w \right|^{2\varepsilon} \tau^{\varepsilon} \right) (dw)^{\varepsilon}$$
(30)

Corollary. Consider the following LFSE:

$$\frac{\partial u(x,\tau)}{\partial \tau} = -\frac{\hbar}{2i\mu} \frac{\partial^2 u(x,\tau)}{\partial x^2}, \quad x \in \mathbb{R}, \, \tau > 0$$
(31)

with the following initial conditions:

$$u(x,0) = u_0(x), \quad x \in \mathbb{R}$$

$$u(x,\tau) \to 0 \text{ as } |x| \to \infty, \quad \tau > 0$$
(32)

Then the solution of (31), under previous conditions eq. (32):

$$u(x,\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} u_0^*(w) E_{1,1}(-\kappa |w|^2 \tau) dw$$
(33)

where $\kappa = -\hbar_{\varepsilon}/2i^{\varepsilon}\mu$.

Conclusions

In this work, we have introduced a LFSE and established solution for the same. The solution has been advanced in terms of the generalized MLF in a compact form with the help of Laplace and FTs and their inverses. We will obtain solutions of the same type differential equations by using the LF operator in future works.

References

- [1] Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000
- [2] Sabatier, J., et al., Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, Springer, New York, USA, 2007
- [3] Carpinteri, A., Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics, Springer, New York, USA, 1997
- [4] Koeller, R. C., Applications of Fractional Calculus to the Theory of Visco-Elasticity, *Journal Appl. Mech.* 51 (1984), 2, pp. 299-307
- [5] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction Mathematical Models, World Scientific, Singapore, 2009
- [6] Laskin, N., Fractional Quantum Mechanics, Phys. Rev. E, 62 (2000), Sept., pp. 3135-3145
- [7] Tofight, A., Probability Structure of Time Fractional Schrodinger Equation, *Acta Physica Polonica A*, 116 (2009), 2, pp. 111-118
- [8] Chaurasia, V. B. L, Kumar, D., Solutions of Unified Fractional Schrodinger Equations, ISRN Mathematical Physics, 2012 (2012), ID 935365
- [9] Oldham, K. B., Spanier, J., The Fractional Calculus, Academic Press, New York, USA, 1974
- [10] Miller, K. S., Ross, B., An Introduction the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc., New York, USA, 1993
- [11] Podlubny, I., Fractional Differential Equations, Academic Press, New York, New York, USA, 1999
- [12] Samko, S. G., et al., Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Amsterdam, Netherlands, 1993
- [13] Kilbas, A. A., et al., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, Netherlands, 2006
- [14] Ben-Adda, F., Cresson, J., About Non-Differentiable Functions, *Journal Math. Anal. Appl.*, 263 (2001), 2, pp. 721-737
- [15] Babakhani, A., Daftardar-Gejji, V., On Calculus of Local Fractional Derivatives, Journal Math. Anal. Appl., 270 (2002), 1, pp. 66-79
- [16] Kolwankar, K. M., Gangal, A. D., Fractional Differentiability of Nowhere Differentiable Functions and Dimension, *Chaos*, 6 (1996), 4, pp. 505-513
- [17] Kolwankar, K. M., Gangal, A. D., Holder Exponents of Irregular Signals and Local Fractional Derivatives, *Pramana*, 48 (1997), 1, pp. 49-68
- [18] Chen, Y., et al., On the Local Fractional Derivative, Journal Math. Anal. Appl., 362 (2010), 1, pp. 17-33
- [19] Kolwankar, K. M., Levy Vehel, J., Measuring Functions Smoothness with Local Fractional Derivatives, Fract. Calc. Appl. Anal., 4 (2001), 3, pp. 49-68
- [20] Yang, X. J., Local Fractional Integral Transforms, Progress in Non-Linear Science, 4 (2011), Jan., pp. 1-225
- [21] Yang, X. J., Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher, Hong Kong, 2011
- [22] Yang, X. J., Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, 2012
- [23] Yang, X. J., Local Fractional Fourier Analysis, Advances in Mechanical Engineering and its Applications, 1 (2012), 1, pp. 12-16
- [24] Yang, X. J., et al., A Novel Approach to Processing Fractal Signals Using the Yang-Fourier Transforms, Procedia Engineering, 29 (2012), Dec., pp. 2950-2954
- [25] Guo, S. M., et al., The Improved Fractional Sub-Equation Method and Its Applications to the Spacetime Fractional Differential Equations in Fluid Mechanics, Phys. Lett. A., 376 (2011), 4, pp. 407-411
- [26] Yang, X. J., A Short Introduction Yang-Laplace Transforms in Fractal Space, Advances in Information Technology and Management, 1 (2012), 2, pp. 38-43
- [27] Yang, X. J., The Discrete Yang-Fourier Transforms in Fractal Space, Advances in Electrical Engineering Systems, 1 (2012), 2, pp. 78-81

- [28] Yang, X. J., et al., A New Family of the Local Fractional PDE, Fundamenta Informaticae, 151 (2017), 1-4, pp. 63-75
- [29] Yang, X. J., et al., A New Numerical Technique for Solving the Local Fractional Diffusion Equation: 2-D Extended Differential Transform Approach, Applied Mathematics and Computation, 274 (2016), Feb., pp. 143-151
- [30] Singh, J., et al., On the Local Fractional Wave Equation in Fractal Strings, Mathematical Methods in the Applied Sciences, 42 (2019), 5, pp. 1588-1595
- [31] Kumar, D., et al., A Hybrid Analytical Algorithm for Non-Linear Fractional Wave-Like Equations, Mathematical Modelling of Natural Phenomena, 14 (2019), 3, 304
- [32] Yang, X. J., et al., Local Fractional Integral Transforms and Their Applications, Elsevier, New York, Academic Press, 2016
- [33] Compte, A., Stochastic Foundations of Fractional Dynamics, *Physical Review E*, 53 (1996), 4, pp. 4191-4193
- [34] Metzler, R., Klafter, J., The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach, *Physics Report*, 339 (2000), 1, pp. 1-77