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In this study, we obtain the solution of a local fractional Schrodinger equation. The 
solution is obtained by the implementation of the Laplace transform and Fourier 
transform in closed form in terms of the Mittag-Leffler function.
Key words: local fractional calculus, Laplace transforms, Fourier transform, 

Schrodinger equations

Introduction

Fractional analysis has much applications in diverse fields of science and engineering; 
such as, statistics, control theory, optics, quantum mechanics, traffic flow, etc.

Fractional analysis arises in much problems of physics [1, 2], continuum mechanics 
[3], visco-elasticity [4, 5], quantum mechanics [6-8], and other branches of applied mathematics 
[9-13]. However, these spherical defined fractional derivatives do not usually project the local 
geometric behaviours for a given function. Attempts have been made recently [14-19] to define 
a local version of the fractional derivative and integral. Also, local fractional (LF) analysis was 
extended to LF Fourier series [20, 21], Yang-Fourier transform (FT) [21-25], Yang-Laplace 
transform (LT) [20, 25, 26], discrete Yang-FT [23, 27]. The LF diffusion equation with local 
fractional PDE was researched in [28, 29]. The LF wave equation and non-linear fractional 
wave-like equations was investigated in [30, 31].

The local fractional Schrodinger equation (LFSE) in (1+1)-fractal dimensional space:
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where the wave function u(x, τ) is local fractional continuous (LFC) function, µ and hε are 
constants.

In this article our aim is to investigate the non-differentiable solutions for LFSE by 
using the local fractional LT method.

Preliminary and properties 

In this portion, we introduce some mathematical preliminaries calculus theory in frac-
tal space for our next progress [21, 22, 32].

Let ψ : χ → ς be a function defined on a fractal set χ of fractal dimension σ(0 < σ ≤ 1). 
A real valued function ψ(r) defined on the fractal set χ is given:
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( ) ,r r rσ σψ χ= ∈ (2)
 The Mittag-Lefler function (MLF) defined on the fractal set χ is given:
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Definition 1. If there exists:

( ) ( )0r r σψ ψ ε− < (4)

with |r – r0| 
< δ, for ε, δ ∈ ℝ+, then ψ(r) is called LFC at r = r0 and it is denoted:
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Suppose a function ψ(r)  is LFC on the interval (a, b) then: 

( ) ( ),r C a bσψ ∈ (6)

Definition 2. Let ψ(r) ∈ Cσ(a, b). The LF derivative of ψ(r) of order σ at r = r0 is given:

( ) ( ) ( )
( ) ( )

( )0
0

0
0

0

lim
r r

r r

r rdr r
dr r r

σσ
σ

σ σ

ψ ψ
ψ ψ

→
=

∆ −  = =
−

(7)

where

 ( ) ( ) ( ) ( ) ( )0 01r r r rσ ψ ψ σ ψ ψ∆ − ≅ Γ + −      

with the Gamma function:
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The LF partial derivative operator of ψ(r, t) of order σ(0 < σ ≤ 1) with respect to t in 
the domain χ:
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where

 
( ) ( ) ( ) ( ) ( )0 0, , 1 , ,r t r t r t r tσ ψ ψ σ ψ ψ∆ − ≅ Γ + −      

The LF derivative of kth order:
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and LF partial derivative of kth order:
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Definition 3. Let ψ(r) ∈ Cσ(a, b). The LF integral of ψ(r) of order σ(0 < σ ≤ 1):
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where Δrk = rk+1 – rk with r0  = a < r1 <...< rN–1 < rN = b. 
Definition 4. Setting ψ ∈ L1,σ [ℝ]  and ||ψ||1,σ < ∞ the local fractional LT operator of ψ(r):
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The inverse equation of the LT operator of Ψ(s): ℒ

( ) ( )
( )

( ) ( )( )1 1 d
2

i

i

s r s E r s s
α

σσ σ
σ σσ

α

ψ
+ ∞

−

− ∞

Ψ = = Ψ   π ∫L (14)

where sσ = ασ + iσ∞σ and Re(sσ) = ασ. 
Definition 5. By setting ψ ∈ L1,σ [ℝ] and ||ψ||1,σ < ∞, the local fractional FT operator of 

ψ(r): 
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The inverse local fractional FT operator of Ψ(w):
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Theorem 6 (LT). Suppose that ψ(r) ∈ L1,σ [ℝ]+, ℒσ [ψ(r)] = Ψ(s), and  lim
r → ∞

ψ(r) = 0, then 
there is: 
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We remark that there is:
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where n ∈ N. 
Theorem 7 (FT). Suppose that ψ(r), Ψ(w) ∈ L1,σ [ℝ], Fσ [ψ(r)] = Ψ(s), and lim

|r| → ∞
 ψ(r) = 0.

Then:
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We use the slightly modified form of the previous results in our research [33, 34]:
( ) ( ) ( )r w rσσ

σ ψ ψ  = −    F F (20)

instead of eq. (19).

Main results 

In this chapter, we will research the solution of the LFSE (1).
Theorem 7. Consider the following 1-D LFSE:
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with the initial conditions:
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where ћ is Planck constant divided by 2π, µ – the mass, and u(x, τ) – the wave function of the 
particle. Then, for the solution (21), under the given condition in eq. (22):
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where E  is the MLF and κ = – ћε /2iεµ. 
Proof. Applying the LT according to the time variable τ on both the sides of (21) and 

using the initial conditions in eq. (22) and the eq. (17):
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where κ = – ћε /2iεµ. 
If we apply the FT according to space variable and use the eq. (20):
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Solving for ū*(w, s):
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To recover the function u(x, τ) from (26) it is convenient first to invert the LT and then 
the FT:
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where Eε,σ(r) is the MLF [32]:
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we obtain:
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Now the inverse local FT leads to:
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Corollary. Consider the following LFSE:
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with the following initial conditions:
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Then the solution of (31), under previous conditions eq. (32):
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where κ = – ћε /2iεµ. 
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Conclusions 

In this work, we have introduced a LFSE and established solution for the same. The 
solution has been advanced in terms of the generalized MLF in a compact form with the help 
of Laplace and FTs and their inverses. We will obtain solutions of the same type differential 
equations by using the LF operator in future works.
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