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As a time-shifting load that is gradually popularized in the northern region, elec-
tric heating load has great adjustment potential. Because the electric heating op-
eration characteristics are affected by many non-linear factors, the traditional 
equivalent thermal parameters model cannot accurately evaluate the regulation 
capability of individual electric heating load. Aiming at this problem, this paper 
proposes an evaluation method for the regulation capability of individual electric 
heating load based on radial basis function neural network. Firstly, electric heat-
ing load control experiments were carried out in a typical room of a residential 
quarter in winter and relevant experimental data were collected. Then, based on 
the operation data, the radial basis function neural network is used to evaluate the 
regulation capability of the individual electric heating load. Finally, the evaluation 
results based on radial basis function neural network are compared with those 
based on back propagation neural network and equivalent thermal parameters 
model. The results show that the proposed method has the least evaluation error 
and can more accurately evaluate the regulation capability of individual electric 
heating load. 
Key words: load modelling, load control, electric heating load, regulation 

capability evaluation, radial basis function neural network

Introduction

In recent years, due to the increasing proportion of renewable energy such as wind 
power in the Northeast Power Grid, the source side active regulation resources are gradually 
lacking, and the load side adjustable resources are increasingly receiving attention [1]. Con-
sidering the long duration of severe cold in winter in Northeast China and the characteristics 
of fixed power by heat, the difficulty of peak shaving can be solved by vigorously promoting 
electric heating to increase the regulation potential of power grid in Northeast China.

Since the electric heating load can quickly respond to the control command, it is 
an extremely valuable schedulable resource on a short time scale, called fast flexible load  
[2, 3]. According to statistics, in 2017, the cumulative installed capacity of electric heating 
equipment in Changchun City reached 290 MW, and the heating area reached 3.17 million 
square meters, accounting for 3.08% of the total heating capacity of the city. If the ability to ad-
just the electric heating load can be fully tapped, the effect of peak-cutting and valley filling can 
be achieved at a small cost, and the contradiction between supply and demand can be alleviated.
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In [4], the equivalent thermal parameter (ETP) model is used to establish an air-condi-
tioning polymerization model and evaluate the response potential. The [5] based on the first-or-
der physical thermal model to establish a aggregated air conditioning load model, and studied 
the practicality of the aggregation model to provide frequency modulation standby for the grid. 
The [6, 7] constructed a aggregated temperature control load model composed of electric water 
heater load, and proposed a new serialization control strategy. At present, research on tempera-
ture control load such as electric heating mainly focuses on temperature-controlled load polym-
erization model based on ETP model, while research on evaluating the regulation capability of 
individual electric heating equipment is relatively rare, and the actual operating data of electric 
heating is lacking. When using the ETP model analysis, the model is insufficient in evaluating 
the regulating capacity of a specific single electric heating load.

In view of the previous problems, this paper proposes an evaluation method for the 
regulation capability of individual electric heating load based on radial basis function (RBF) 
neural network. This method establishes a model by using RBF neural network algorithm based 
on actual electric heating operation data, evaluates the regulation capability of individual elec-
tric heating, and compares the evaluation results with based on back propagation (BP) neural 
network and ETP model to verify the effectiveness of the method.

Regulation capability experiment  
of the electric heating load

Load regulation capability: The load can change its original demand mode according 
to a certain mechanism, that is, the load can realize the flexible change of demand increase and 
decrease within a certain interval [8]. Electric heating load will cause energy loss in indoor 
temperature regulation. The regulation capability of electric heating load studied in this paper 
refers to the adjustable interval of electric heating load in time dimension under the given tem-
perature constraint.

Physical model of individual electric heating load

Modelling individual electric heating load, firstly study the coupling relationship be-
tween its load power state and indoor temperature. Set [T–, T+] to represent the range of indoor 
temperature change under the normal working state of electric heating. The T+, T–, and the tem-
perature setting value of electric heating Tset satisfy eq. (1):
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In the formula, the meaning of δ is the 
temperature adjustment range of electric heat-
ing load [9].

As shown in fig. 1, assuming that the 
outdoor ambient temperature does not change 
during the control period, when the indoor tem-
perature is set to a fixed value, the switching state 
of the electric heating load will change periodi-
cally, and the corresponding indoor temperature 
will also change periodically within the upper 
and lower limits of the indoor temperature.

Figure 1. Thermal behavior of a heat pump 
unit
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According to this relationship, a physical model of electric heating load is estab-
lished, the most typical one is the ETP model. This model is based on the equivalent heat 
capacity and equivalent thermal resistance 
with ambient temperature, energy efficiency 
ratio, time, and is suitable for cold/heat load 
modelling of residential. The building ther-
mal model of a typically individual electric 
heating load room in a northern residential 
area is shown in fig. 2.

In fig. 2, Ti is the indoor temperature, To – the outdoor ambient temperature, Th – 
the electric heating load temperature, Rob – the thermal resistance between wall and outdoor 
air, Rbi – the interior wall and indoor air, Rv – the indoor and outdoor air, respectively, Rh – the 
thermal resistance of electric heating load, Cb, – the represent building wall heat capacity,  
Ci – the and indoor air heat capacity, Ch – the electric heating load heat capacity, respectively, φs – 
the solar radiation gains, φc – the human activity gains, and φh – the electric heating heating gains. 

From the point of view of simplification, the previous model can be described by the 
first-order ETP model [10]. When the solar radiation gain has a small influence on the indoor 
temperature, the first-order ETP model can be used to describe the change of indoor tempera-
ture by eq. (2).
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where T ti  [℃] is the indoor temperature at time t, T t+1
o  [℃] – the outdoor ambient temperature 

at time t + 1, C [J℃–1] – the equivalent heat capacity of the system, R [℃W–1] – the equivalent 
heat resistance of the system, Q – the heating power of the electric heating equipment, K – the 
start and stop state of electric heating, the value of 0 means that the electric heating is off, the 
value of 1 means the electric heating is turned on,  t – the simulation time, and Δt – the simu-
lation time step.

Setting that the opening time is τon and the closing time is τoff in the control cycle of 
electric heating load, the eqs. (1) and (2) iterative calculation can get eqs. (3) and (4):
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Collection of experimental data

In order to obtain real and effective ex-
perimental data, the electric heating load con-
trol experiment was carried out on the electric 
heating system of a residential area in Chang-
chun city. The floor plan of the electric heating 
residential building is shown in fig. 3, and ex-
perimental room is shaded position.

Figure 2. Building thermal model of  
individual room
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an electric heating residential building



Zhang, L., et al.: Regulation Capability Evaluation of Individual Electric ... 
2824 THERMAL SCIENCE: Year 2019, Vol. 23, No. 5A, pp. 2821-2829

In this experiment, 1601 
typical bedroom was used for 
electric heating load control, 
and the time of data collection is  
2018/2/24 18:00 – 2018/3/4 18:00. 
The T+ and T– are set to 24 ℃  
and 19 ℃, respectively, and the 
sampling time interval is 5 min-
utes. The experimental room is in 

the shaded side, and the effect of solar radiation on the indoor temperature is negligible. As 
shown in fig. 4, the main test equipment includes: distributed electric heating load (the function 
is to adjust the indoor temperature), thermostat (the function is to accept and execute tempera-
ture control instructions), network box (function for wireless connection network box and cloud 
control platform).

Experimental data preprocessing

Raw data interpolation

The experiment limits the sampling time resolution 5 minutes due to the device it-
self. In order to more accurately reflect the actual indoor and outdoor temperature changes 
and the working state of the electric heating load, this experiment uses the cubic spline inter-

polation method to interpolate the original data, 
thereby improving the time resolution. The time 
resolution after interpolation was 1 minute, with 
11520 sets of data. The changes before and after 
partial data interpolation are shown in fig. 5.

From the fig. 5, it can be seen that after in-
terpolation, the indoor temperature curve tends 
to be smooth, and the working state of electric 
heating load has shifted (at 7 minutes, the on-
state of the electric heating is shifted to the time 
of 8 minutes; the opening state at 61 minutes 
is shifted to the time of 58 minutes; the closing 
state at 75 minutes is shifted to the time of 73 
minutes).

Preprocessing of outdoor  
temperature data

Due to the lack of real experimental data 
in traditional research, outdoor ambient tem-
perature measurement usually sets a constant 
value, ignoring the change of outdoor ambient 
temperature, while the actual outdoor ambient 
temperature is constantly changing, and there 
are even great differences in different time peri-
ods. In this paper, by analyzing the response time 
of the heating and cooling process in each con-
trol cycle of electric heating load, as shown in  

Figure 4. Laboratory equipment: (a) electric heating load,  
(b) thermostat, and (c) network box

(a) (b) (c)

Figure 5. Changes in room temperature 
and load switch status before and after 
interpolation
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Figure 6. Electric heating load response time 
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fig. 6, it can be seen that the heating time is ba-
sically stable within 15 minutes, and the cooling 
time is stable within 40 minutes.

Define the current time as M time, and 
after 40 minutes it is M + 40 time. During the 
cooling process, the range of temperature dif-
ference between outdoor ambient temperature 
at M time and that at M + 40 time is shown in 
fig. 7.

The analysis shows that 94.30% of the 
data changes in outdoor temperature stable be-
tween −1.5 ℃ to +1 ℃, the average temperature 
of 0.66 ℃, the outdoor environment tempera-
ture has no obvious change. Therefore, in order 
to reduce the fluctuation of outdoor temperature 
on a short time scale and reflect the overall trend 
of outdoor temperature in a short time period, 
it is feasible for this paper to take the average 
value of outdoor environmental temperature at 
time M and time M + 40 as the input data of 
outdoor temperature.

Experiment process

The process of evaluating the regulation 
capability of individual electric heating load 
based on the RBF neural network algorithm is 
shown in fig. 8.

The specific steps are described: 
Step 1. Based on the ETP model, the im-

portant parameters needed to establish the eval-
uation model are determined, and important pa-
rameter data is collected as the basic data into 
the database.

Step 2. First, the basic data is processed, 
including increasing the time resolution and 
short-time scale outdoor temperature averaging 
processing, then dividing the data set into a train-
ing set and a test set. In this experiment, the input 
vector is determined as: the switching state of the 
electric heating load, the power of the load, the 
current indoor temperature, the indoor temperature of the next moment, and the outdoor tempera-
ture. The output vector is determined as: the response time of the electric heating load.

Step 3. Based on the training samples, the network performs training. When the max-
imum number of trainings is reached or the model accuracy reaches the set requirement, the 
training ends, and an electric heating adjustment capability evaluation model is established.

Step 4. Based on the input of the test sample, the model performs prediction and out-
puts the predicted result. The evaluation index is calculated according to the predicted value of 

Figure 7. The M time and M + 40 time outdoor 
temperature difference range

Figure 8. Experimental procedure of RBF 
neural network method
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the load response time and the true value, and the performance of the model is evaluated by the 
evaluation index.

In this paper, the mean absolute error (MAE), root mean square error (RMSE), and 
mean absolute percent error (MAPE) are selected as the evaluation indicators of the model 
prediction effect:
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where yi, y′i represent the true and predicted values of the data, respectively, and n represents 
the total number of data. The smaller the MAE, RMSE, and MAPE values are, the closer the 
network prediction values are to the real values and the higher the prediction accuracy is.

Experiment results and discussion

Simulation analysis based on first-order ETP model

When evaluating the electric heating load regulation capability based on the first-or-
der ETP physical model, the important parameters in the model should be determined first. 

According to [8], the equivalent heat ca-
pacity, C, and the equivalent thermal re-
sistance, R, of the first-order ETP model 
are determined based on a large number of 
measured data. The main system parame-
ters of the electric heating room are shown 
in tab. 1.

Taking the indoor temperature heating process as an example, the forecasting results 
of the capacity of electric heating load up-regulation in some time periods are shown in fig. 9.
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Figure 9. (a) The capacity of electric heating load up-regulation, (b) relative error and  
error distribution

Figure 9 shows that the relative error of ETP model in predicting the response time of 
electric heating load during heating process is between −91.3% and +25.5%, and the relative 

Table 1. Typical bedroom electric  
heating – building system parameters

Parameter Value Parameter Value
R 0.1279 [℃W–1] δ 2.5 ℃
C 1887.7403 [J℃–1] Tset 21.5 ℃
Q 900 [W]
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error of 67.42% of the samples is between −20% and +20%, and the relative error of 43.82% of 
the samples is between −10% and +10%. Among them, the prediction of the regulation capabil-
ity of the sample data in the time scale of 1-5 minutes is the main reason for the relative error 
greater than 20%. As shown in tab. 2.

Table 2. Partial 1-5 minute time scale adjustment ability prediction
Actual value 5 4 3 2 1

Predictive value 3.926 2.487 1.317 0.516 0.086
Relative error −21.48% −37.83% −56.10% −74.20% −91.40%

Evaluation of electric heating load response  
potential based on neural network

When the artificial neural network method is used to model 1601 electric heating 
room in this example, there were 3089 sets of data in the indoor temperature heating process 
during the experimental period. The first 3000 sets of data were used as training samples, and 
the last 89 sets were used as test samples. There were 8431 sets of data in the cooling process. 
The first 8370 sets of data were used as training samples, and the last 61 sets were used as test 
samples. The number of nodes in the network input layer is 5 and the output layer is 1.

Simulation prediction based on RBF neural network

This example determines that the RBF neural network mean squared error goal is 
0.1, and the RBF expansion speed is 1. Taking the heating process as an example, fig. 10 
shows the prediction results of the response time after training by RBF neural network algo-
rithm.

Figure 10 shows that the relative error of the response time of the electric heating load 
based on the RBF neural network is between −41.7% and +57.0%, and it is normally distrib-
uted. Among them, 86.52% of the samples have a relative error between −20% and +20%, and 
71.91% of the samples have a relative error between −10% and +10%.
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Figure 10. (a) The capacity of electric heating load up-regulation, (b) relative error and  
error distribution

For the prediction of the response time of the cooling process, the experimental meth-
od is similar to the heating process, and the experimental results are: Using eq. (4), based on 
the ETP model, the relative error of the electric heating load in the response time of the cooling 
process is between −97.9% and +15.1%; the relative error of 20.69% of the samples is between 
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−20% and +20%, and the relative error of 10.34% of the samples is between −10% and +10% 
and based on RBF neural network, the relative error of the load is between −27.2% and +80.8%; 
the relative error of 77.59% of the samples is between −20% and +20%, and the relative error 
of 56.90% of the samples is between −10% and +10%. 

Similar to the heating process, the prediction of the adjustment ability of the sample 
data in the time scale of 1-5 minutes is the main reason for the relative error of more than 20%.

Simulation prediction based on BP neural network

This experiment uses a three-layer BP neural network for simulation testing. The hid-
den layer is set to 8 nodes. The learning efficiency is set to 0.1, the error precision is 10–5, and 
the maximum number of training is 300.

The experimental operation is similar to the RBF neural network prediction, and this 
process will not be described again. The experimental results are the relative error of the re-
sponse time of the electric heating load heating process is between −28.1% and +70.3%. Among 
them, 87.64% of the samples have a relative error between −20% and +20%, and 70.78% of 
the samples have a relative error between −10% and +10%. The relative error of the response 
time of the electric heating load cooling process is between −17.4% and +88.1%. Among them, 
the relative error of 48.28% of samples is between −20% and +20%, and the relative error of 
20.69% of samples is between −10% and +10%.

The prediction error results of the three methods are shown in tab. 3.

Table 3. Error analysis of response time prediction (UP is prediction error of  
up-regulation capability and DOWN is prediction error of down-regulation capability)

UP UP UP DOWN DOWN DOWN
MAE [minute] RMSE MAPE [%] MAE [minute] RMSE MAPE [%]

ETP 0.9253 1.0788 22.5370 6.8255 7.8114 56.4196
BP 0.6346 0.9778 10.4521 2.9742 3.5460 29.7211

RBF 0.5235 0.7012 9.6691 1.8918 2.3445 17.5818

Table 3 shows that:
 – Based on the different working states of the electric heating load, the results of the horizon-

tal comparison of the evaluation of the regulation capability are: the time scale of the electric 
heating load cooling process is larger than the heating process, therefore, in the prediction of 
response time, the MAE, RMSE, and MAPE of the three evaluation methods have increased 
to some extent.

 – Based on the differences in the three methods described herein, the results of the longi-
tudinal comparison of the evaluation of electrical heating load regulation capability are: 
compared with the prediction results based on the ETP model, the neural network is more 
accurate the MAE, RMSE, and MAPE are smaller than the ETP model. 

At the same time, the evaluation accuracy of RBF neural network is higher than that 
of BP neural network, which can more effectively evaluate the regulation capability of individ-
ual electric heating load.

Conclusions

In order to accurately evaluate the regulation capability of individual electric heat-
ing load, this paper based on the experimental data, the average value of outdoor temperature 
in short period of time is taken as the input of outdoor temperature data, which reduces the 
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fluctuation of outdoor temperature on short time scale and reflects the overall trend of outdoor 
temperature. Based on the ETP model to determine the important parameters of the model, this 
paper proposes a method based on RBF neural network to evaluate the regulation capability of 
individual electric heating load.

The simulation results show that the evaluation method based on RBF neural network 
proposed in this paper has the smallest error and the highest accuracy compared with the BP 
neural network and the first-order ETP model in the evaluation of individual electric heating 
regulation capacity, and can more effectively excavate the adjustable resources on the load 
side. It provides a reliable response potential evaluation method for dispatching center or load 
control agent. After that, the research on the polymerization and dispatch control methods of 
electric heating load will be the next work direction.
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