ADOMIAN-PADÉ APPROXIMATE SOLUTIONS TO THE CONFORMABLE NON-LINEAR HEAT TRANSFER EQUATION

by

Aliyu Isa ALIYUa,b, Mustafa INCa, Abdullahi YUSUFa,b, and Dumitru BALEANUc,d*

a Department of Mathematics Faculty Science, Science Faculty, Firat University, Elazig, Turkey
b Department of Mathematics, Faculty of Science, Federal University Dutse, Jigawa, Nigeria
c Department of Mathematics, Cankaya University, Ankara, Turkey
d Institute of Space Sciences, Magurele, Romania

Original scientific paper
https://doi.org/10.2298/TSCI181029037A

This paper adopts the Adomian decomposition method and the Padé approximation technique to derive the approximate solutions of a conformable heat transfer equation by considering the new definition of the Adomian polynomials. The Padé approximate solutions are derived along with interesting figures showing the approximate solutions.

Key words: Adomian decomposition method, conformable heat transfer equation, Padé approximation

Introduction

It is well-known that the majority of the real-world physical phenomena are modeled by mathematical equations, especially PDE [1]. The investigations of the exact and numerical solutions of various PDE have become a very important practice by different scholars [2]. In recent time, fractional derivatives have been applied in various fields of physical sciences such as reaction diffusion, heat transform, control, and many more. Fractional derivatives have many kinds of definitions [3-5]. We consider the non-linear conformable heat transfer equation in the following form [6]:

\[\frac{\partial^{\alpha} u}{\partial t^{\alpha}} = \frac{\partial^{2} u}{\partial x^{2}} - 2u^{3} \]

(1)

with the initial condition:

\[u(x,0) = \frac{1 + 2x}{x^{2} + x + 1} \]

(2)

Equation (1) has been solved using different techniques, including the fractional complex transform along with He’s variational iteration method [6], homotopy perturbation method [7], sub-equation method [8]. This paper applies the Adomian decomposition method and the Padé approximation technique [9] to search for an approximate solutions of the model problem. Several research results have been report in the last few decades in this avenue [10-20].

* Corresponding author, e-mail: dumitru@cankaya.edu.tr
Conformable fractional derivative

In what follows, we give a brief description of the conformable derivative given by Khalil et al. [5]:

Definition 1. Let

\[f : [a, b] \times (0, \infty) \to \mathbb{R} \]

then the conformable fractional derivative of \(f \) is defined:

\[\mathcal{T}_a^\alpha (f)(x, t) = \lim_{{\varepsilon \to 0}} \frac{f(x, t + \varepsilon (t - x)^{1-\alpha}) - f(x, t)}{\varepsilon}, \quad \alpha \in (0, 1] \]

for all \(t > 0 \).

When \(a = 0 \), we have \(\mathcal{T}_a^\alpha (f)(x, t) = \mathcal{T}_x^\alpha (f)(x, t) \). This definition of fractional derivative satisfies the following properties.

Theorem 2. Let \(\alpha \in (0, 1] \) and \(a, b \in \mathbb{R} \), then:

- \(\mathcal{T}_a (au + bv) = a \mathcal{T}_a (u) + b \mathcal{T}_a (v) \)
- \(\mathcal{T}_a (t^s) = \lambda t^{s-\alpha}, \lambda \in \mathbb{R} \)
- \(\mathcal{T}_a (uv) = u \mathcal{T}_a (v) + v \mathcal{T}_a (u) \)
- \(\mathcal{T}_a \left(\frac{u}{v} \right) = \frac{u \mathcal{T}_a (v) - v \mathcal{T}_a (u)}{v^2} \)
- \(\mathcal{T}_x^\alpha (u)(t) = t^{1-\alpha} u'(t), u \in C^1 \)
- \(\mathcal{T}_x^\alpha (u)(t) = (t - x)^{1-\alpha} u'(t), u \in C^1 \)

Padé approximation

Consider a system of fractional differential equations [9]:

\[
\begin{align*}
L_1 u_1 + R_1 (u_1, u_2, \ldots, u_s) + N_1 (u_1, u_2, \ldots, u_s) = g_1 \\
L_2 u_1 + R_2 (u_1, u_2, \ldots, u_s) + N_2 (u_1, u_2, \ldots, u_s) = g_2 \\
&\vdots \\
L_s u_1 + R_s (u_1, u_2, \ldots, u_s) + N_s (u_1, u_2, \ldots, u_s) = g_s
\end{align*}
\]

(5)

Subject to the initial or boundary conditions:

\[
B_1 (u_1, \ldots, u_s) = \sum \sum \rho_{1, t, \ldots, y} \frac{\partial_{(t, \ldots, y)}}{\partial_{(t, \ldots, y)}} \bigg|_{t=h, s} = p_1 (x, y, \ldots),
\]

\[
B_2 (u_1, \ldots, u_s) = \sum \sum \rho_{2, t, \ldots, y} \frac{\partial_{(t, \ldots, y)}}{\partial_{(t, \ldots, y)}} \bigg|_{t=h, s} = p_2 (x, y, \ldots)
\]

(6)

Applying the inverse \(L_i^{-1} \) on both sides of eq. (5) gives:
\[
\begin{align*}
 u_1 &= \phi_1 + L_1^{-1} g_1 - L_1^{-1} R_1 (u_1, u_2, \ldots, u_s) - L_1^{-1} N_1 (u_1, u_2, \ldots, u_s) \\
 u_2 &= \phi_2 + L_2^{-1} g_2 - L_2^{-1} R_2 (u_1, u_2, \ldots, u_s) - L_2^{-1} N_2 (u_1, u_2, \ldots, u_s) \\
 &\vdots \\
 u_s &= \phi_s + L_s^{-1} g_s - L_s^{-1} R_s (u_1, u_2, \ldots, u_s) - L_s^{-1} N_s (u_1, u_2, \ldots, u_s)
\end{align*}
\]

(7)

in which the \(\phi \) engulf the constants of integration w.r.t the variable \(t \). The solution \(u_i \) can be dissolve into a series as [9]:

\[
 u_i = \sum_{m=0}^{\infty} u_{i,m}, \quad i = 1, 2, \ldots, s,
\]

(8)

\[
 \left[\sum_{n=0}^{\infty} A_{n,m} \right] = \left[\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{\nu=0}^{\infty} (u_{\nu} - u_0)^n \frac{\partial^n N(u_0)}{\partial u_0^n} \bigg|_{u \geq p_1(m)} \right]_{\| A \|_{p_2(m)}}
\]

(9)

and the non-linear terms \(N_i(u_1, u_2, \ldots, u_s) \) are assumed to be decomposed into a multivariable Adomian polynomials (AP) given:

\[
 N_i(u_1, u_2, \ldots, u_s) = \sum_{m=0}^{\infty} A_{i,m} (u_{1,0}, u_{2,0}, \ldots, u_{m,0}, u_{s,0}, \ldots, u_{s,m}) \lambda^m
\]

(10)

which are defined by

\[
 A_{i,m} = \frac{1}{m!} \frac{d^m}{d\lambda^m} N_i\left(\lambda, u_1(\lambda), \ldots, u_s(\lambda)\right)_{\lambda=0}
\]

and where \(A_{i,m} \) can be generated for the four classes of the AP as shown by the cases:

- **Class I.** The AP \(A^{(I)}_{i,m} \), is represented:

 \[
 \theta^{(I)}_{i,m} = \sum_{n=0}^{\infty} \frac{\phi^{(I)}_{i,m} - u_{i,0}}{n!} N^n_i(u_{i,0}), \quad m \geq 1
 \]

 (11)

and

\[
 \phi^{(I)}_{i,m} = \sum_{\nu=0}^{m-1} \phi^{(I)}_{i,\nu}, \quad A^{(I)}_{i,0} \equiv \theta^{(I)}_{i,1}
\]

(12)

for \(m \geq 1 \): \(A_{i,m} = \theta^{(I)}_{i,m+1} - \theta^{(I)}_{i,m} \).

- **Class II.** The AP \(A^{(II)}_{i,m} \) is represented:

 \[
 \theta^{(II)}_{i,m} = \sum_{n=0}^{\infty} \frac{\phi^{(II)}_{i,m} - u_{i,0}}{n!} N^n_i(u_{i,0}), \quad m \geq 1
 \]

 (13)

and

\[
 \phi^{(II)}_{i,m} = \sum_{\nu=0}^{m-1} \phi^{(II)}_{i,\nu}, \quad A^{(II)}_{i,0} \equiv \theta^{(II)}_{i,1}
\]

(14)

for \(m \geq 1 \): \(A_{i,m} = \theta^{(II)}_{i,m+1} - \theta^{(II)}_{i,m} \).
Class III. The AP $A_{i,m}^{(III)}$ is represented:

$$
\theta_{i,m}^{(III)} = \sum_{n=0}^{\infty} \left[\frac{\phi_{i,m-n+1}^{(III)} - u_{i,0}}{n!} \right] N_i^n (u_i, 0), \quad m \geq 1
$$

(15)

and

$$
\phi_{i,m}^{(III)} = \sum_{v=0}^{m-1} u_{i,v}, \quad A_{i,0}^{(III)} \equiv \theta_{i,1}^{(III)}
$$

(16)

for $m \geq 1$: $A_{i,m}^{(III)} = \theta_{i,m+1}^{(III)} - \theta_{i,m}^{(III)}$.

Class IV. The AP $A_{i,m}^{(IV)}$ is represented:

$$
\theta_{i,m}^{(IV)} = \sum_{n=0}^{\infty} \left[\frac{\phi_{i,m-n+1}^{(IV)} - u_{i,0}}{n!} \right] N_i^n (u_i, 0), \quad m \geq 1
$$

(17)

and

$$
\phi_{i,m-n+1}^{(IV)} = \sum_{v=0}^{m-1} u_{i,v}, \quad A_{i,0}^{(IV)} \equiv \theta_{i,1}^{(IV)}
$$

(18)

for $m \geq 1$: $A_{i,m}^{(IV)} = \theta_{i,m+1}^{(IV)} - \theta_{i,m}^{(IV)}$.

Substitution eqs. (8) and (10), and utilizing the Adomian-Rach double decomposition approach, one can get:

$$
\begin{align*}
\sum_{m=0}^{\infty} u_{i,m} &= \sum_{m=0}^{\infty} \left(\phi_{i,m}^{(I)} + L_1^{-1} g_1 - L_1^{-1} R_1 \sum_{m=0}^{\infty} u_{i,m}, \ldots, \sum_{m=0}^{\infty} u_{i,m} \right) - L_1^{-1} \sum_{m=0}^{\infty} A_{i,m} \\
\sum_{m=0}^{\infty} u_{2,m} &= \sum_{m=0}^{\infty} \left(\phi_{2,m}^{(I)} + L_2^{-1} g_1 - L_1^{-1} R_2 \sum_{m=0}^{\infty} u_{i,m}, \ldots, \sum_{m=0}^{\infty} u_{i,m} \right) - L_2^{-1} \sum_{m=0}^{\infty} A_{2,m} \\
&\vdots \\
\sum_{m=0}^{\infty} u_{s,m} &= \sum_{m=0}^{\infty} \left(\phi_{s,m}^{(I)} + L_s^{-1} g_1 - L_1^{-1} R_s \sum_{m=0}^{\infty} u_{i,m}, \ldots, \sum_{m=0}^{\infty} u_{i,m} \right) - L_s^{-1} \sum_{m=0}^{\infty} A_{s,m}
\end{align*}
$$

(19)

For the specified initial value problems [12], with $L = \frac{d^\alpha}{dt^\alpha}$ being the operator, $k_1 - 1 < \alpha \leq k_i$, we have:

$$
\phi_{i,m} = C_{i,1}^m + C_{i,2}^m t + \ldots, C_{i,k_i}^m t^{k_i}
$$

(20)

with $C_{i,j}$, $j = 1, \ldots, k_i$. For fractional IVP we have:

$$
\phi_{i,m} = \sum_{l=0}^{k_i-1} l^\alpha C_{i,l}^m
$$

(21)

in which $C_{i,j}^m$, $j = 1, \ldots, k_i$ are computed using the conditions. Thus, $u_{i,m} (m \geq 0)$ can be derived from:
The solutions of the approximants are:

$$\phi_{i,r} = \sum_{m=0}^{r-1} u_{i,m}$$ \hspace{1cm} (23)

From eq. (23), using all other solution terms $u_{i,j}$, $j = 1,2,...$, can be obtained. Thus, the approximation $\phi_{i,r}$ for the solutions u_{i}, $i = 1,2,...,s$ are derived.

The Padé approximation

To fasten the convergence of the series solutions, the Padé approximants method is also assimilated into the previous described algorithm given as: The main concept of Padé approximants is to replace a series function $f(z) = \sum_{n=0}^{\infty} c_n z^n$ \cite{11} by:

$$A_{[L/M]}(z) = \frac{a_0 + a_1 z + ... + a_L z^L}{1 + b_1 z + ... + b_M z^M}$$ \hspace{1cm} (24)

given by $[L/M]$ called the Padé approximants.

For a function $f(z) = c_0 + c_1 z + ... + c_j z^j$, the coefficients $a_0,a_1,...,a_L,b_0,b_1,...,b_M$ can be calculated by matching the series coefficients. Therefore, one can acquire the following sequence:

- $[1/1]$ \hspace{1cm} $[1/1] = \frac{a_0}{b_1}$,

- $[2/2]$ \hspace{1cm} $[2/2] = \frac{a_0 + a_1 z + a_2 z^2}{1 + b_1 z + b_2 z^2}$, \hspace{1cm} $\lim_{z \to \infty}[2/2] = \frac{a_2}{b_2}$,

- $[3/3]$ \hspace{1cm} $[3/3] = \frac{a_0 + a_1 z + a_2 z^2 + a_3 z^3}{1 + b_1 z + b_2 z^2 + b_3 z^3}$, \hspace{1cm} $\lim_{z \to \infty}[3/3] = \frac{a_3}{b_3}$,

- ...

- $\lim_{z \to \infty}[m/m] = \frac{a_m}{b_m}$.

Application to the conformable heat transfer equation

We will consider the Class (IV) AP eq. (17) to compute the truncated series solutions and then compare the exact eq. (2) and approximate solutions. For each of the cases to be considered, we will use Padé approximant sizes of $[10/10]$ and $[20/20]$.

- If we select $\alpha = 0.5$, using 7 terms of an Adomian power series, Padé approximant size of $[10/10]$ and using the Class (IV) AP, we obtain the following expression of the Padé approximant for this case (figs. 1 and 2):

$$\text{Pade}_{[10/10]} = 1 - 2.25676 \sqrt{t} + 44.34929 r^2 - 22.98715 r^{3/2} + 8 r - 1472.2094 t^3 + 42956.3698 t^{3/2} - 428.22830 t^{5/2}$$ \hspace{1cm} (25)
If we select $\alpha = 1$, using 10 terms of an Adomian power series, Padé approximant size of $[10/10]$ and using the Class (IV) AP, we obtain the following expression of the Padé approximant for this case (figs. 3 and 4):

$$
\text{Pade}_{10/10} = -2t + 4t^2 - 8t^3 + 16t^4 - 32t^5 + 64t^6 - 128t^7 + 256t^8 - 512t^9 + 1024t^{10} \quad (26)
$$

If we select $\alpha = 0.8$, using 10 terms of an Adomian power series, Padé approximant size of $[20/20]$ and using the Class (IV) AP, we obtain the following expression of the Padé approximant for this case (figs. 5 and 6):

$$
\text{Pade}_{20/20} = 1 - 2t + 4t^2 - 8t^3 + 16t^4 - 32t^5 + 64t^6 - 128t^7 + 256t^8 - 512t^9 + 1024t^{10} \quad (27)
$$

Concluding remarks

In this work, we have successfully used the Padé approximation technique to derive the approximate solutions of a conformable heat transfer equation. The result shows that the method is powerful and efficient for solving the non-linear fractional differential equations arising in engineering and science. It is observed that the numerical solutions are in closed agreement with the exact solution. Some interesting figures have been given the comparison approximate solutions for the different steps in figs. 1-6.
Figure 3. Comparison of the Adomian-Padé approximate solutions eq. (26) for the different steps $0 \leq t \leq 1$ and $0 \leq u \leq 100$ (for color image see journal web site)

Figure 4. The decomposition solution for the 10th-order series for $0 \leq x \leq 1$, $0 \leq t \leq 1$ and $0 \leq u \leq 60$ with eq. (2) (for color image see journal web site)

Figure 5. Comparison of the Adomian-Padé approximate solutions eq. (27) for the different steps $0 \leq t \leq 1$ and $0 \leq u \leq 100$ (for color image see journal web site)
References