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This paper explores the approximate analytical solution of non-linear Klein-Gor-
don equations (NKGE) by using multistep modified reduced differential transform 
method (MMRDTM). Through this proposed strategy, the non-linear term is sub-
stituted by associating Adomian polynomials obtained by utilization of a multistep 
approach. The NKGE solutions can be obtained with a reduced number of comput-
ed terms. In addition, the approximate solutions converge rapidly in a wide time 
region. Three examples are provided to illustrate the effectiveness of the proposed 
method to obtain solutions for the NKGE. Graphical results are shown to represent 
the behavior of the solution so as to demonstrate the validity and accuracy of the 
MMRDTM.
Key words: Adomian polynomials, multistep approach, NKGE 

reduced differential transform method

Introduction

Klein-Gordon (KG) equation is an important equation which is related to the 
Schroedinger equation. It is applied widely in fields, such as quantum mechanics, solid state 
physics and non-linear optics [1]. The KG equation is one of the important equations in solitons 
studies, particularly in the examination of solitons interactions for a collisionless plasma and 
the recurrence of initial states [2, 3].

Many techniques have been implemented to derive the approximate analytical solu-
tion of the KG equations. In 2011, Servi and Oturanc [4] executed reduced differential trans-
form method (RDTM) to solve KG equation. On the other hand, to calculate the exact traveling 
wave solutions to the KG equation, Hafez et al. [5] used the novel (G’/G)-expansion method. 
Meanwhile, Venkatesh, et. al, [6] used Lagendre wavelet-based approximations to solve KG 
equation that arise in quantum field theory using wavelets. Recently, Agom and Ogunfiditi-
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mi [7] proposed the modified Adomian decomposition method (ADM) to find the exact solution 
to NKGE with quadratic non-linearity.

Many PDE, ODE and delay differential equations have been solved by utilizing DTM 
and RDTM [8-14]. Ray [15] proposed an adjustment on the fractional RDTM and executed 
it to obtain solutions of fractional Korteweg de Vries (KdV) equations. Through this method-
ology, the modification included the substitution of the non-linear term by relating Adomian 
polynomials. Therefore, the solutions of non-linear initial value problem can be obtained in an 
easier way with reduced computed terms. Further, El-Zahar [16] introduced adaptive multistep 
DTM to obtain solution of singular perturbation initial-value problems. It yields the solution in 
a rapid convergent series which results in the solution converging in wide time region. Recent-
ly, Che Haziqah et. al. [17] has proposed and implemented MMRDTM for solving non-linear 
Schroedinger equations (NLSE). The results showed the approximate solutions of NLSE with 
high accuracy were obtained.

In this study, we combine modification in [15] and multistep approach in [16] to imple-
ment a new technique called MMRDTM. The key benefit of the proposed technique is that it pro-
duces an analytical approximation in a rapid convergent sequence with elegant computed terms.

Application of MMRDTM for  
the solution of NKGE

Let us use the general NKGE of the form [18]:

 ( , ), , 0− + + = ∈Ω < ≤k
tt xx tu u u u f x t x t Tα β γ  (1)

which is subjected to the following initial conditions:

 0( ,0) ( ),= ≤ ≤u x u x a x b  

 1( ,0) ( ), = ≤ ≤tu x u x a x b
where [ , ] , ( , ) = ⊂a b R u x tΩ denotes the wave displacement at position x  and time t , 0 ( )u x is 
a known function and , α β , and γ  are real numbers ( 0)≠γ . The 2=k  is the case of quadratic 
non-linearity and 3=k  for a cubic non-linearity.

Applying basic properties of modified RDTM to eq. (1), we obtain:
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From the initial condition, we can write:

 0 ( ) ( )=U x f x  (3)

The non-linear term can be composed:

 [ ]0 1
0

( , ) ( ), ( ), , ( )n n
n

Nu x t A U x U x U x
∞

=

= …∑  

We acquire the following ( )kU x  values by straightforward iterative estimation and 
substituting eq. (3) into eq. (2). Then, inversely, the transformation of the set of values 0{ ( )} =

n
k kU x  

gives the n-terms estimation solution:
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For 1,2, ,= …i M , the interval [0, ]T  is separated into N  subintervals 1[ , ]−i it t  by using 
equal step size of /=h T M  and nodes =it is. Multistep RDTM is computed according to the 
following steps. 

Firstly, the RDTM is applied to the initial value problem in interval 1[0, ].t  From that 
point, the estimated result is obtained using the initial conditions 0 1 1( ,0) ( ),  ( ,0)  ( ).= =u x f x u x f x

 [ ]1 ,1 1
0

( , ) ( ) , 0,
=

= ∈∑
K

k
k

k
u x t U x t t t  

For 2,≥i  the initial conditions ( )1 1 1 1( ), , , / ,  ( ) ( )− − − −= ∂ ∂i i i i i iu x t u x t t u x t  are utilized at 
each subinterval 1[ , ],−i it t  and the multistep RDTM is applied to the initial value problem in 

1[ , ],−i it t  where 0t  is substituted by 1.−it  For 1,2, ,= …i M , the procedure is continued and re-
peatedly performed to obtain estimated solutions ( , )iu x t  in sequence form that is: 

 [ ], 1 1
0

( , ) ( )( ) , ,− −
=

= − ∈∑
K

k
i k i i i i

k
u x t U x t t t t t  

In fact, the MMRDTM expects the following solution:
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We found that the calculation of MMRDTM is straightforward with better computa-
tional performance for all values of .s  If the step size =h T , we can easily notice that the 
MMRDTM reduces to the MRDTM

Numerical results and discussions

We give three test problems to evaluate if this method is efficient and accurate to solve 
NKGE.

Example 1. Consider the second-order NKGE [19]:

 2 0tt xxu u u− + =  (4)

with the following indicated initial condition:

 ( ,0) 1 sin( )u x x= +  

 0( ,0)t xu =  

There is no exact solution for this equation. Using basic properties of MMRDTM then 
followed by utilizing MMRDTM for eq. (4), we obtain the following equation:

 
( )( )

2

2, , ,2
0

1( ) ( )
2 1

n

k i k i k i
k

U x U x A
k k x+

=

   ∂  = −    + + ∂     
∑  (5)

From the initial condition, we compose:

 0 ( ) 1 sin( )U x x= +  (6)
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The following ( )kU x  values are obtained by substituting eq. (6) into eq. (5) by 
straightforward iterative calculation. Then, the inverse transformation of the set of values 

6
6 0{ ( )} =kU x  gives the 6-terms estimated solution:

 

2

4

6

3 3 1( , ) 1 sin( ) sin( ) cos(2 )
2 4 4

25 1 1 1sin( ) cos(2 ) sin(3 )
48 4 4 48

79 17 41 263 1sin( ) cos(2 ) sin(3 ) cos(4 )
480 144 1440 2880 576

 = + + − − + +  
 + − + − +  

 + − + + − −  

u x t x x x t

x x x t

x x x x t  

where [0.1,0.3]∈t .
For 1,2,3=i , the interval [0.1,0.3] is divided into  3  subintervals 1[ , ]−i it t  by equaliz-

ing step size by using the nodes .=it ih  For 2,≥i  the initial conditions 1,( )− =i iu x t
( ) ( )1 1 1 1 1, , / , )( / ,( ) ) (− − − − −= ∂ ∂ = ∂ ∂i i i i i iu x t t u x t t u x t  will be used at each subinterval 1[ , ]−i it t  

Then, the modified RDTM is utilized to the initial value problem in interval 1[ , ]−i it t , where 0t  
is substituted by 1.−it  The process is continuously and repeatedly performed to obtain estimated 
solutions ( , ), 1,2,3=iu x t i  for the solution ( , )u x t , such as:

 , 1 1
0

( , ) ( )( ) , [ , ]− −
=

= − ∈∑
K

k
i k i i i i

k
u x t U x t t t t t  

We compare the approximate results with DTM and RDTM. It is clear that the 
MMRDTM result converges for 0=x  until 1=x  compared with the DTM results obtained by 
Kanth and Aruna [19]. From the results, figs. 1(a) and 1(b) show approximation of MMRDTM 
and RDTM for [0,1]∈t  and [ 4,4]∈ −x , respectively. The performance error analyses obtained 
by MMRDTM are tabulated in tab. 1.

U(x) U(x)

x(a)

MMRDTM RDTM

(b)

t

x

t

Figure 1. Approximation result of MMRDTM and RDTM for Example 1  
(for color image see journal web site)

Example 2. Consider the second-order non-linear Klein Gordon [17]:

 ( ) ( )2 2 2cos cos− + = − +tt xxu u u x t x t  (7)
which is subjected to the initial condition:

 ( ),0 =u x x  

 ( ),0 0=tu x  
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The exact solution of this equation is cos( )x t .
Using basic properties of MMRDTM and then applying MMRDTM to eq. (7), we 

obtain:

Table 1. Results of MMRDTM and RDTM approximate solutions for Example 1

x
t = 0.1

MMRDTM RDTM DTM [17]

0.0 0.9950000000 0.9950000250 0.995000000
0.1 0.9950000250 1.0932911790 1.093336821
0.2 0.9950000011 1.1905030880 1.190602734
0.3 0.9950000026 1.2856688480 1.285829872
0.4 0.9950000000 1.3778447100 1.378073322
0.5 0.9949999983 1.4661192190 1.466420573
0.6 0.9949999998 1.5496219390 1.550000812
0.7 0.9950000005 1.6275316940 1.627994045
0.8 0.9950000026 1.6990842440 1.699640074
0.9 0.9950000002 1.7635793560 1.764245622
1.0 0.9949999983 1.8203872150 1.821201388

x
t = 0.2

MMRDTM RDTM DTM
0.0 0.9800000001 0.980001600 0.980000000
0.1 0.9799999992 1.073726340 1.073725261
0.2 0.9800000009 1.166138067 1.166138050
0.3 0.9800000001 1.256331039 1.256328927
0.4 0.9799999995 1.343432093 1.343427256
0.5 0.9800000009 1.426608233 1.425698958
0.6 0.9800000016 1.505073435 1.505058688
0.7 0.9799999973 1.578094717 1.578075355
0.8 0.9799999992 1.644997412 1.644678005
0.9 0.9800000004 1.705169747 1.705161053
1.0 0.9799999985 1.758066717 1.758088889

x
t = 0.3

MMRDTM RDTM DTM
0.0 0.9550000001 0.955018225 0.955000000
0.1 0.9550000006 1.041329837 1.041318399
0.2 0.9550000012 1.125975246 1.125970235
0.3 0.9550000008 1.208148067 1.208145667
0.4 0.9549999994 1.287088561 1.287081794
0.5 0.9550000000 1.362088667 1.362067708
0.6 0.9549999996 1.432495777 1.432448098
0.7 0.9550000020 1.497715374 1.497625423
0.8 0.9550000030 1.557212650 1.557060645
0.9 0.9550000010 1.610513250 1.610272513
1.0 0.9549999990 1.657203346 1.656835416
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From the initial condition, we write:

 0 ( ) =U x x  (9)

The ( )kU x  values is obtained by substituting eq. (9) into eq. (8) by straightforward 
iterative calculation. Then, the inverse transformation of the set of values 6

6 0{ ( )} =kU x  gives the 
6-terms approximation solution:

 
( )

[ ]

2 2 4

2 2 6

1 1 1, x  
2 8 24

1 1 1 1 1 1  , 0,1
120 15 8 24 144 720

 = − + + + 
 

  + − + − − ∈    

u x t x t x x t

x x x x x t t
 

Divide the interval [0,1] into 10 subintervals 1[ , ], 1,2, ,10, − = …i it t i by using equal 
step size 0.1=h  and the nodes .=it ih  The core ideas of the MMRDTM are as follows. Firstly, 
the RDTM is applied to the initial value problem over the interval 1[0, ].t  

For 2, ≥i we use the initial conditions ( )1 1 1 1 ( ), , ,) (/ ,( )− − − −= ∂ ∂ =i i i i i iu x t u x t t u x t  
( ) 1 1( )/ ,− −= ∂ ∂ i it u x t  at each subinterval 1[ , ],−i it t  and the MRDTM is applied to the initial value 

problem over the interval 1[ , ],−i it t  where 0t  is replaced by 1.−it  Next, the multistep scheme for 
repeating process are 0 1( ,0) ( ), ( ,0) 0.= =u x f x u x  The process is continued and repeated to 
generate a sequence of approximate solutions 2( , ), 1, , ,10,= …i ix tu  for the solution ( , )u x t  
such as:

 , 1 1
0

( , ) ( )( ) , [ , ]− −
=

= − ∈∑
K

k
i k i i i i

k
u x t U x t t t t t  

Figure 2(a) shows the exact solution, fig. 2(b) shows the graph of approximate solu-
tion MMRDTM for t ∈ [–5,5] and x ∈ [–5,5] while fig. 2(c) shows the graph of approximate 
solution RDTM for t ∈ [–5,5] and x ∈ [–5,5]. Obviously, the multistep approximate solutions 
for this type of NKGE are very close to the exact solutions. The performance error analyses 
obtained by MMRDTM are summarized in tab. 2. 

Example 3. Consider the second-order NKGE [17]:

 
2

2 2 2sin
4 2
π π − + + =  

 
tt xxu u u u x t  (10)

subject to the initial condition:

 ( ,0) 0=u x  

 ( ,0)
2
π

=tu x x  

The exact solution of this equation is sin( /2)πx t .
Using fundamental properties of MMRDTM then utilizing MMRDTM to eq. (10), 

we can get:
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From the initial condition, we write:

 0 ( ) 0=U x  (12)

Separate the interval [0,1] into 10 subintervals 1[ , ], 1,2, ,10, − = …i it t i of equal step 
size 0.1=h  and use the nodes .=it ih  The main ideas of the MMRDTM are as follows. Firstly, 
the RDTM is applied to the initial value problem over the interval 1[0, ].t  

Table 2. Comparison error results of MMRDTM and 
RDTM approximate solutions for Example 2

T Exact solution Absolute error
(MMRDTM)

Absolute error
(RDTM)

0.1 0.09950041653 8.000000∙10−11 1.33230000∙10−7

0.2 0.19601331550 1.000000∙10−10 8.50420000∙10−6

0.3 0.28660094670 5.000000∙10−10 9.63977000∙10−5

0.4 0.36842439760 6.600000∙10−9 5.37570800∙10−4

0.5 0.43879128100 4.820000∙10−8 2.02903150∙10−3

0.6 0.49520136890 2.489000∙10−7 5.97327430∙10−3

0.7 0.53538953110 9.954000∙10−7 1.478879110∙10−2

0.8 0.55736536740 3.305200∙10−6 3.219962880∙10−2

0.9 0.55944897150 9.522700∙10−6 6.343567530∙10−2

1.0 0.54030230590 2.452810∙10−5 1.1152532497∙10−1

Figure 2. Exact solution, approximation  
result of MMRDTM and RDTM for Example 2 
(for color image see journal web site)

U(x)

x(b)

U(x)

(c)

t
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t
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Exact solution
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Figure 3(a) shows the exact solution, fig. 3(b) illustrates the graph of approximate 
solution MMRDTM for t ∈ [–5, 5] and x ∈ [–5, 5] while fig. 3(c) illustrates the graph of ap-
proximate solution RDTM for t ∈ [–5, 5] and x ∈ [–5, 5]. Therefore, as we can see the multistep 
approximate solutions for this type of NKGE are very close to the exact solutions. The perfor-
mance error analyses obtained by MMRDTM are summarized in tab. 3. 

Table 3. Comparison error results of MMRDTM and 
RDTM approximate solutions for Example 3

T Exact solution Absolute error
(MMRDTM)

Absolute error
(RDTM)

0.1 0.01564344651 2.000000∙10–11 2.66113000∙10–6

0.2 0.06180339888 1.000000∙10–11 7.83019000∙10–5

0.3 0.13619714990 1.000000∙10–9 5.44701300∙10–4

0.4 0.23511410100 1.680000∙10–8 2.09835650∙10–3

0.5 0.35355339060 1.558000∙10–7 5.85571500∙10–3

0.6 0.48541019660 9.623000∙10–7 1.33725081∙10–2

0.7 0.62370456700 4.483000∙10–6 2.67454432∙10–2

0.8 0.7608452132 1.698320∙10–5 4.89435943∙10–2

0.9 0.8889195065 5.493920∙10–5 8.45755605∙10–2

1.0 1.0000000000 1.568987∙10–4 1.41378353∙10–1

Figure 3. Exact solution, approximation 
result of MMRDTM and RDTM for 
Example 3 (for color image see journal 
web site)
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Conclusion

In this paper, we proposed and applied an approximate analytical method which is 
called the MMRDTM to solve the 1-D NKGE. In this new strategy, the modification involves 
the replacement of non-linear term by its Adomian polynomials and a multistep approach. The 
results demonstrate that the approximate solutions of NKGE have high precision. In conclu-
sion, we can state that the MMRDTM is a valid and efficient method for finding analytic ap-
proximate solution for these types of equations. The computations in this paper were obtained 
by utilizing MAPLE 13.
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