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The geometric characteristics of the heat transferring surface and the outer  
flow conditions have a significant impact on heat transfer augmentation. Both, the 
surface roughness and the pressure gradient attribute to an enhanced heat trans-
fer. These two effects are utilized in this study to enhance the convective heat trans-
fer rate in a non-similar boundary-layer flow induced by the rotation of a sinusoi-
dal-shaped disk in an external forced flow. The heat transfer coefficient is calcu-
lated numerically for the laminar boundary-layer flow with the help of the Keller-
box method. The numerical solution of the governing system of equations is first 
validated by previous published (theoretical and experimental) results for a wavy 
rotating disk in the absence of an external flow field and also for a flat disk rotating 
in a forced flow. It is observed that the effect of surface waviness along with a 
relative fluid motion on heat transfer rate, shear stresses, and shaft torque is quite 
pronounced. Specifically, enhancement of moment coefficient due to waviness of 
the disk leads to increase the power of a wavy disk pump in comparison to a smooth 
one. Furthermore, 119%, 174%, 86%, and 86% enhancement in the heat transfer 
rate, the radial shear stress, the tangential shear stress, and the moment coeffi-
cient, respectively, is observed for a rotating wavy disk subjected to a forced flow 
(at fixed a/ω = ∞ and a0/λ = 0.125) in comparison to a free rotating flat disk. 

Key words: sinusoidal rotating disk, boundary-layer flow, forced flow,  
heat transfer enhancement 

Introduction 

Numerous industrial applications (turbomachinery, aerospace engineering, fly-

wheels, gear wheels, power engineering, air-cooled turbine disks, gas turbine engines, etc.) 
have highlighted the requirement of a better understanding of flow and heat transfer in disk 

pumps. Particularly, there exists a gap for the improvement of the heat transfer process along 

with the shear stresses on a rotating disk for the prediction of power losses and cooling phe-

nomena in the devices which operate under high speed and high temperatures. The design of 

the disk texture is essential in acquiring an increased power, efficient pumping capacity and 

enhanced heat transfer rate in rotating disk systems. Le Palec [1] and Le Palec et al. [2] in-

vestigated the role of surface roughness of a rotating disk on the process of heat exchange 
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from the disk surface to the surrounding fluid. 

They [1, 2] designed a surface roughness with 

sinusoids which are in fact concentric patterns 

with respect to the rotation axis, as shown in fig. 

1. The construction of sinusoids on the rotating 

disk surface yields a significant heat transfer en-

hancement in comparison to a flat disk. Specif-

ically, selection of an amplitude-to-wavelength 

ratio, a0/λ, of the sinusoid equal to 0.2 results in 

15% heat transfer augmentation compared to a 

flat disk as reported by Le Palec [1]. He also confirmed his results by experiments in [2]. 

However, in the studies [1, 2], the impact of the surface texture has been analyzed solely in 

view of the heat transfer. Thus, information of the flow field is missing which has been ad-

dressed in detail by Yoon et al. [3]. They discussed the effect of waviness on the torque co-

efficient and skin-friction coefficient. 

Interestingly, the limiting case of the above studies [1-3] is the classical von Karman 

[4] problem, i. e. the flow over a flat rotating disk which admits a fully self-similar 3-D solu-

tion and constitutes the basis for most of the 3-D flows like flow over a swept wing, aircraft 

engines, food stuffs in centrifugal pumps, computer disk drivers, flow of waxy crude oil, car 

brake systems, electrochemistry, etc. Regarding to the importance of this flow, various other 

related flow characteristics associated with the rotating disk boundary-layer were investigated 

by several other researchers [5-8] who contributed to this topic in various manners. 

Different options can be adopted in consideration of free disk flows depending on 

whether the ambient fluid is stationary and the disk is rotating or whether the disk is rotating 

in the presence of an external forced flow or the rotating fluid surrounding the stationary disk, 

etc. These different choices reflect the significant variation in the flow characteristics, which 

in turn influences the heat transfer rate and other parameters of engineering interest. The ex-

ternal forced flow associated with a rotating smooth disk has been the subject of several stud-

ies [9-14] and this class of flow is also considered as a more general problem, having the free 

rotating disk flow as a limiting case. The relative motion of the disk and the fluid causes a 

considerable influence on the power needed to spin the flat disk as the torque coefficient 

increases significantly. Based on these observation Mabuchi et al. [10, 11] studied the effect 

of external forced flow on heat transfer from a rotating disk, both theoretically and experi-

mentally in the presence of suction/injection. Moreover, an interesting study on the cooling 

of a rotating disk through forced impingement flow was reported by Shevchuk [14]. 

A large number of engineering applications require the study of the heat transfer and 

fluid flow characteristics of a simultaneous forced flow combined with rotation of solid bod-

ies. By combining the useful effects of relative fluid motion along with altered geometrical 

configurations of the disk surface, as specified by Le Palec [1], it is of practical interest to 

investigate the flow and heat transfer phenomena in case of relative motion of a wavy disk 

and a superimposed forced flow (i. e. to predict the heat transfer rate and shear stresses in the 

situation of relative motion of fluid and sinusoidal-shaped disk). It is worth mentioning that 

the flows addressed by von Karman [4], Mabuchi et al. [10], and Le Palec [1] are limiting 

cases of the current study. The influence of the surface texture of a disk rotating in a super-

imposed forced flow, see fig. 1, on the heat transfer and the torque coefficients, which are of 

particular interest in technological applications, is investigated in the present study by numer-

ical calculations. 

 

Figure 1. Schematic of the disk geometry and 
the used co-ordinate system 
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Theoretical analysis 

Physical model and basic equations 

The investigated wavy disk surface is depicted in fig. 1 along with the associated bound-

ary-layer co-ordinate system. The co-ordinate used to measure the radial distance on the wavy 

disk surface is denoted by x. The normal direction to the disk surface is denoted by y, and the 

angular variation is measured by θ. A sinusoidal-shaped disk is considered which is rotating in 

an external flow with a fixed rotation rate, ω. The disk surface is specified by a continuous dif-

ferentiable function, defined by 0( ) cos(2 π ).s r a N r The surface roughness, given by the ratio 

of amplitude-to-wavelength, a0/λ, is an important parameter to signify the role of disk texture on 

the flow and heat transfer. The role of this ratio is very crucial regarding the development of the 

boundary-layer. Sufficiently large values of this parameter (a0/λ > 1 say) correspond to the situa-

tions involving the surface undulations of sufficient height with small wavelength, even smaller 

than the boundary-layer thickness. Such a situation harms the application of boundary-layer ap-

proximation to the governing Navier-Stokes equations. To avoid such a deadlock situation the 

ratio a0/λ is assumed here to take values a0/λ 1 so that the surface wavelength should remain 

sufficiently larger than the boundary-layer thickness. Such a favorable assumption (a0/λ 1) 

also ensures the absence of flow separation in the valleys of the wavy surface. As depicted in fig. 

1, the rotating wavy disk is also assumed to be subjected to an external forced flow of the form 

ux(r, ∞) = ar. The consideration of such an external forced flow restricts the theoretical analysis 

to certain circumstances. Among which the relationship of the parameter, a, with the axially in-

coming velocity, uy, and the radial extension of the disk are of fundamental nature. Detailed the-

oretical and experimental investigation reported by Mabuchi et al. [10, 11] and later by Shevchuk 

[14] resulted in a satisfactory resolve of the previously mentioned issues of fundamental nature. 

Mabuchi et al. [10, 11] developed a relationship between the stagnation flow parameter, a, and 

the axially incoming velocity, uy, of the form (2uy,∞)/πb. They also determined that the edge (at 

the rim) of the disk affects the flow significantly due to which the flow separation occurs quite 

interior to the disk rim. They determined that for a finite rotating flat disk their theoretical results 

were applicable till r < 0.8b. Although such a range of radial extension on the disk surface for 

which theoretical analysis is applicable is not available for wavy disk. But from the results of flat 

rotating disk we conclude that current analysis concerning a wavy disk does also face similar 

restriction. For a finite wavy disk the current analysis is applicable till quite inside the disk rim 

or the disk may be regarded as having an infinite radius otherwise, in order to avoid the edge 

effects. The disk surface is assumed to be heated with a constant heat flux throughout the disk 

surface. Far away from the disk surface the fluid assumes the ambient temperature, denoted by 

T∞. These boundary conditions can be stated mathematically: 
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where a [= (2uy,∞)/πb] is a stagnation flow parameter having the same dimensions as ω. Simi-

larly, the laws of conservation of mass, momentum and energy in view of the above assump-

tions and by using the boundary-layer assumptions read [15]: 
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Here we assumed constant fluid properties and an incompressible, laminar flow. The 

presence of an external forced flow gives rise to a pressure variation within the boundary-layer 

which is determined by Bernoulli’s equation. However, the pressure variation across the bound-

ary-layer is still negligible. 

Normalization 

The normalization of the variables has been carried out in the same manner as it was 

initially done by Le Palec [1]. However, a little modification is still required as the disk rotation 

rate, ω, has been replaced by the combined rotation rate Λ = (a2 + ω2)1/2. Therefore, the new 

independent variables are defined: 

 ,
x R

y


 
 

   (6) 

where the velocity functions have been replaced by their appropriate relations with the stream 

functions. Therefore, the normalization of the dependent variables is carried out: 
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where R = r/λ, ψ, and ϕ denote the stream functions and are related to the velocity components 

by: 
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Utilizing of eqs. (6)-(8) into eqs. (2)-(5) yields the following non-similar system of 

equations: 
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These equations are still PDE because of the non-similar nature of the flow owing to 

the wavy disk texture. Instead, if one considers the flat disk case then a0/λ tends to zero and the 
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above system becomes independent of ε. Consequently the non-similar PDE reduce to a self-

similar form. As the values of a0/λ depart from zero, the flow character turns to be gradually 

non-similar. Similarly, the flow character also gradually changes from self-similar to non-sim-

ilar as one continuously starts to depart from the disk center to the periphery by moving in the 

radial direction. These facts provide us the solid grounds for the utilization of the von Karman’s 

self-similar solution as the initial solution in our numerical scheme. As in the present case a0/λ 

is non-zero therefore the calculation of the term (ε/R)/(dR/dε) is mandatory before going to the 

integration the non-similar equations. This can simply be computed from the information of the 

disk configuration: 
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The boundary conditions in terms of the new variables read: 
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Numerical solution 

The non-similar eqs. (9)-(11) subject to the boundary conditions (13) have been solved 

numerically by implementing the Keller-box method [16] to obtain the velocity and temperature 

profiles. The validity of the present 

method is first confirmed by acquiring the 

flat disk results as well as the Le Palec 

et al. [2] results. A comparison is shown 

in tab. 1 for the case of a flat disk rotating 

in an external forced flow reported by 

Mabuchi et al. [10] with the present nu-

merical results. Our numerical calcula-

tions show an excellent agreement with 

the values reported in Mabuchi et al. [10], 

see tab. 1. The present results for the case 

of a rough rotating disk are also in very 

good accordance with those reported by 

Le Palec et al. [2] (see for instance figs. 

11-13). This validates the numerical pro-

cedure used here. 

Velocity profiles 

Radial component of velocity 

The radial velocity component in dimensionless form is displayed in fig. 2 for a sur-

face roughness ratio a0/λ = 0.1. The impact of the external flow on the wavy disk is similar to 

the flat disk case and the disk rotation effects become less pronounced as one increases the 

values of the ratio a/ω. This means that when the radial pressure gradient starts to dominate, 

the surface irregularities do not contribute too much to assist the flow induced by the disk rota-

tion. This fact can also be understood form fig. 3 which elucidates that the positive change in 

Table 1. Comparison of the present numerical 
calculations with the work of Mabuchi et al. [10] 

a/ω 
2fηη(0) –gηη(0) 

[10] Present  [10] Present 

0 1.020 1.020 0.6159 0.6159 

0.1 1.037 1.037 0.6413 0.6413 

0.25 1.124 1.124 0.6991 0.6991 

0.5 1.373 1.373 0.8004 0.8004 

1 1.871 1.872 0.9334 0.9335 

2 2.332 2.333 1.025 1.025 

∞ 2.624 2.624 1.075 1.075 
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surface roughness ratio corresponds to a very slightly enhancement of the radial component of 

the velocity and do not interrupt the nature of the flow pattern that was exhibited by the smooth 

disk. Nevertheless, these two figures are still useful in realizing the enhanced convection caused 

by the surface undulations on the disk surface. This fact can be mad better visible by choosing 

smaller value of a/ω.  

 

Figure 2. Variation of the radial velocity 
component with a/ω for a sinusoidal- 

shaped disk 

 

Figure 3. Variation of the radial velocity 
component with surface roughness ratio  

at a fixed a/ω = 0.5 

Circumferential component of velocity 

Again, the impact of radial pressure gradient on the circumferential velocity compo-

nent remains the same, as shown in fig. 4, where the velocity profile shows the typical bound-

ary-layer character. The influence of disk surface texture on this velocity component is also 

quite weak but it is of the same nature as for the radial component of the velocity shown in 

fig. 3. Clearly, the velocity gradient is increased across the boundary-layer which is an indica-

tion of the enhanced convective transport, see fig. 5). 

 

Figure 4. Variation of the circumferential velocity 
component with a/ω for a wavy disk 

 

Figure 5, Variation in circumferential velocity 
component with surface roughness ratio at a 
fixed a/ω = 0.5 

Radial and circumferential shear stresses  

on the wavy disk 

The shear stresses acting on the disk surface in radial and circumferential directions 

due to the radial and azimuthal components of flow are given by: 
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In terms of dimensionless variables, they are, respectively, transformed into: 

 
1/2 1/2Re 2 (0, ), and Re 2 (0, )r fr r f

R R
C f C g     

 
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where Cfr = (2τr)/(ρr2Λ2) and Cfθ = (2τθ)/(ρr2Λ2) denote the coefficients of wall skin-friction in 

the radial and circular directions respectively, and Rer = (Λr2)/n represents the local Reynolds 

number. One can easily recover the relations for a smooth disk from the above ones, eq. (15), 

if one investigates a0 → 0 (see Mabuchi et al. [10]). The surface roughness ratio (a0/λ) strongly 

effects both the local azimuthal and radial skin-friction coefficients, which have been displayed 

in figs. 6 and 7 for a relative motion of the fluid and the disk (a/ω = 0.25). Due to the wavy disk 

shape, they are also periodic functions but involving a double periodicity in contrast to the 

surface geometry. This behavior is a consequence of the typical form of the factor ∂R/∂ε which 

involves the square of the sinusoidal function. It can also be noticed from figs. 6 and 7 that an 

increase in the amplitude-to-wavelength ratio results in a decrease of these two quantities. In-

terestingly, both the shear stresses show maximum values for the case of the smooth disk (a/λ 

= 0) for which the boundary-layer thickness is smallest, see figs. 2 and 4. This suggests that the 

local shear stresses are smaller in magnitude for the wavy disk in comparison to the smooth 

disk and it is necessary to calculate the overall shear stresses (by calculating average values) on 

the whole disk surface in order to see the true picture of the shear stresses generated by the 

simultaneous rotation and motion of the outer flow. The average values of the radial and tan-

gential shear stresses are obtained by integrating eq. (15) over the disk surface: 

 
1/2 1/2 1/2 1/21 1

Re Re d , and Re Re df r r f fr r r fr

S S

C C S C C S
S S

     (16) 

where S repents the area of the sinusoidal-shaped disk. The influence of surface roughness can 

be quantified with the help of the area of the smooth disk (πb2) as a reference, where b is the 

disk radius. In doing so the corresponding average skin-friction coefficients results in: 

 
2 2

, and
π π

f p f frp fr

S S
C C C C

b b
    (17) 

 

Figure 6. Local azimuthal skin-friction coefficient 
as a function of amplitude-to-wavelength ratio with 
relative motion of disk and fluid 

 

Figure 7. Local radial skin-friction coefficient 
as a function of amplitude-to-wavelength ratio 
with relative motion of disk and fluid 
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These results, eqs. (16) and (17), are shown in figs. 8 and 9 from where it can clearly 

be observed that the fC   and frC  both decrease, Curves 1 in figs. 8 and 9, as the surface 

roughness ratio, a0/λ, increases. But with the contribution of the actual area of the wavy disk 

the corresponding average shear stresses given in eq. (17) show higher values in comparison to 

the smooth disk, refer to Curves 2 in figs. 8 and 9. 

 

Figure 8. Influence of amplitude-to-wavelength 
ratio on average radial skin-friction coefficients 

(1) and (2)fr frpC C  

 

Figure 9. Influence of amplitude-to-wavelength 
ratio on average azimuthal skin-friction 

coefficients  (1) and (2)f f pC C  

 Both of these shear stresses, f pC   and ,frpC have been enlarged by up to 15% for a 

fixed surface roughness ratio (i. e.  a0/λ = 0.2) due to the wavy surface in the absence of radial 

pressure gradients. The influence of a relative motion of the disk and the potential flow on these 

shear stresses can also be seen from figs. 8 and 9. It can be seen that these quantities take higher 

values due to the increasing radial pressure gradient. Interestingly, in the presence of a radial 

pressure gradient the wavy surface contributes 

the same (15%) increment in the shear stresses 

(refer to tab. 2) as it does in the absence of exter-

nal flow. In comparison to a free rotating flat 

disk, the radial and tangential shear stresses of 

the wavy rotating disk in forced flow have been 

increased up to 174% and 86%, respectively, for 

fixed a0/λ = 0.125, a0/ω = ∞. 

The influence of the number of sinusoids on 

the average tangential frictional coefficient, 

,f pC   is also crucial to be explored. This is pre-

sented in fig. 10 where f pC  is plotted against 

the number of waves N fitted to the fixed radius 

b of the disk. The average tangential shear stress increases slowly when N is varied from 1 to 

8. For N > 4, its value becomes almost constant. 

Shaft torque of the wavy disk 

The total shaft torque, ,M of the wavy disk is defined: 

 2 2 1/2

0

d 2π (1 ) d

b

M r s r s r         (18) 

 

Figure 10. Dependence of average azimuthal 
skin-friction coefficient on the number of 
sinusoids 
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where the moment coefficient, ,MC is calculated: 

 
2 5

4
M

M
C

b
  (19) 

From tab. 2, an appreciable increase in torque coefficient is noted for the wavy disk. 

The disk power is increased up to 7% due to the surface irregularities at a0/λ = 0.125 regardless 

of the absence or presence of the outer potential flow. Although the presence of the external 

potential flow does increase the disk power but contribution of surface irregularities always 

stays the same, see tab. 2). An increase of 86% in the moment coefficient of the wavy disk is 

achieved for a0/λ = 0.125, a0/ω = ∞ in comparison to the free rotating flat disk case, see tab. 2. 

Table 2. Average azimuthal and radial skin-friction coefficients, moment coefficient, and Nusselt 
number (Pr = 0.71, N = 3) 

a/ω a0/λ f pC   frpC  
MC  Nu p  a/ω a0/λ f pC   frpC  

MC  Nu p  

0 0.0 1.2319 1.0204 1.9351 0.3259 0.5 1/10 1.6719 1.4340 2.6262 0.5072 

 1/16 1.2543 1.0391 1.9703 0.3318  1/8 1.7073 1.4641 2.6819 0.5180 

 1/10 1.2865 1.0656 2.0208 0.3402 1 0.0 1.8675 1.8720 2.9335 0.5764 

 1/8 1.3135 1.0878 2.0633 0.3473  1/16 1.9010 1.9060 2.9862 0.5870 

0.1 0.0 1.2827 1.0372 2.0149 0.3587  1/10 1.9498 1.9548 3.0628 0.6020 

 1/16 1.3061 1.0562 2.0516 0.3652  1/8 1.9914 1.9961 3.1281 0.6148 

 1/10 1.3395 1.0832 2.1041 0.3745 2 0.0 2.0512 2.3332 3.2220 0.6368 

 1/8 1.3677 1.1057 2.1483 0.3823  1/16 2.0877 2.3752 3.2794 0.6484 

0.25 0.0 1.3983 1.2325 2.1964 0.4103  1/10 2.1414 2.4361 3.3637 0.6650 

 1/16 1.4237 1.1441 2.2363 0.4178  1/8 2.1869 2.4875 3.4352 0.6790 

 1/10 1.4602 1.1734 2.2937 0.4285 ∞ 0.0 2.1505 2.6248 3.3780 0.6690 

 1/8 1.4910 1.1978 2.3421 0.4374  1/16 2.1886 2.6718 3.4378 0.6812 

0.5 0.0 1.6011 1.3711 2.5150 0.4858  1/10 2.2450 2.7404 3.5264 0.6986 

 1/16 1.6300 1.3982 2.5604 0.4946  1/8 2.2927 2.7983 3.6013 0.7133 

Heat transfer rate 

The calculation of the influence of sinusoidal-shape on the heat transfer on the disk 

surface is very important. In fact the wavy shape of the disk results in a higher heat transfer rate 

as anticipated. The local heat transfer rate from the disk surface is computed by looking at the 

Nusselt number: 

 Nu
h

k


  (20) 

where h = qw/(Tw – T∞) is the local heat transfer coefficient, and qw – the local heat flux at the 

surface. In view of non-dimensional variables, it is calculated: 

 
1/2 1

Re Nu
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R


 
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The effect of surface roughness on local heat transfer coefficient is depicted in fig. 11 

which also shows a double periodicity in the local heat transfer rate with decaying amplitude 

for the case of a/ω = 0 and 0.25, where an absence of the radial pressure gradient (a/ω = 0) 

corresponds to the free rotating wavy disk case investigated by Le Palec et al. [2]. The local 

heat transfer rate at the wavy disk surface in an external flow is qualitatively the same as for a 

free rotating wavy disk situation apart from the fact that the relative motion of the disk and fluid 

is to strengthen the heat exchange from disk to fluid. Similar to the shear stresses, the local heat 

transfer rates presented in fig. 11 are lower than the flat disk case and in order to analyze the 

heat transfer situation, one need to calculate the overall heat exchange from a wavy disk to the 

surrounding flow, which can be done by computing the average Nusselt number corrected by 

the surface area ratio. The average Nusselt number relation can be found in a similar manner as 

the average skin-friction coefficients were calculated and is given by: 
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The averaged Nusselt number, Nu ,p is shown in fig. 12 from where it can clearly be 

observed that the Nu  decreases (Curves 1 of fig. 12) as the ratio a0/λ increases, while the aver-

aged Nusselt number, Nu ,p  (Curves 2 of fig. 12) increases in comparison to the smooth disk 

results for increasing values of the surface roughness ratio, a0/λ. In both situations (free rotating 

disk with and without super imposed forced flow), the overall heat transfer rate is 15% higher 

due to the shape of the disk (for a0/λ = 0.2). The influence of the surface waviness on 
Nu and Nu p in a forced flow is again identical to the case when the disk is rotating freely 

whereas both the Nusselt numbers, Nu and Nu ,p attained larger values in the presence of an 

external forced flow. This means that the relative motion of the disk and fluid contribute sig-

nificantly towards a better cooling of the wavy disk. In tab. 2 the enhancement in heat transfer 

rate due to the waviness and the relative motion of the disk and fluid is reported in detail. In 

case of a/ω = ∞ and a0/λ = 0.125. an enhancement of 119%, in comparison to a free rotating 

flat disk, has been achieved in heat transfer from the disk to the surrounding fluid. The impact 

of the number of sinusoids on the average Nusselt number, Nu ,p is finally displayed in fig. 13. 

Similar to the results observed for the averaged tangential shear stress only a very small effect 

of N on Nu p can be observed. 

 

Figure 11. Local Nusselt number as a function of 
amplitude-to-wavelength ratio with relative motion 
of disk and fluid for Pr = 0.71 

 

Figure 12. Influence of amplitude-to-
wavelength ratio on average Nusselt number 

Nu (1) and Nu p  (2) for Pr = 0.71 
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Conclusions 

A numerical study has been performed for 

the flow and heat transfer subject to a rotating 

wavy disk in the presence of forced flow. The nu-

merical solution has been validated for a flat ro-

tating disk case in the presence of an external 

forced flow with the results reported in [10] and 

in excellent agreement has been found. Moreover, 

the authenticity of the present solution is also con-

firmed with the theoretical and experimental work 

of Le Palec et al. [2] (i. e. the heat transfer and 

flow is induced only due to the rotation of sinusoidal-shaped disk) and the present results are in 

good accordance with those results reported by Le Palec et al. [2]. The present analysis reveals 

that all physical parameters of interest like the radial and tangential wall shear stresses, moment 

coefficient, and heat transfer rate (Nusselt number) exhibit a double periodicity in both situations 

(rotating wavy disk with and without external forced flow) in comparison to the geometrical con-

figuration. Due to the surface roughness almost 15% enhancement in the values of the average 

radial, azimuthal skin-friction coefficients and the average Nusselt number is observed for both 

conditions (rotating disk with and without external flow field) for a0/λ = 0.2. The moment coeffi-

cient is also increased due to the sinusoidal-shape of the disk which in turn shows that the power 

to spin the disk is increased in comparison to the smooth disk. Furthermore, 119%, 174%, 86%, 

and 86% enhancement in the heat transfer rate, the radial shear stress, the tangential shear stress, 

and the moment coefficient is observed for a wavy disk rotating in a forced flow at fixed  

a/ω = ∞ and a0/λ = 0.125 in comparison to a free rotating flat disk. This fact highlights the benefits 

of a disk with sinusoidal waves under the action of an external forced flow. 
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Nomenclature 

a – pure constant, [s–1] 
a0 – amplitude of wavy disk, [m] 
b – disk radius, [m] 
Cfr, Cfθ – r, θ components of local shearing, [–] 

,fr fC C   – average shear stresses on the disk 
surface, [–] 

,frp f pC C   – average radial and tangential shear 
stresses related to flat disk surface, [–] 

MC  – moment coefficient, [–] 
f(e,η), g(e,η) – dimensionless stream functions, [–] 

M  – rotating torque, [kgm2s–2] 
N – number of sinusoids, [–] 
Nu – local Nusselt number, [–] 
Nu  – average Nusselt number related to the 

actual disk surface, [–] 

Nu p  – average Nusselt number related to the 
flat disk surface, [–] 

Pr – Prandtl number, [–] 

qw – uniform wall heat flux, [kgs–3] 
R – dimensionless radial distance (= r/λ), [–] 
r – radial distance from the rotation axis, [m] 
r  – dimensionless co-ordinate (= r/b), [–] 
Rer – local Reynolds number (= Λr2/  n), [–] 
ReΛ – rotational Reynolds number (= aΛ2/  n), [–] 
S – actual disk surface area, [m2] 
T – boundary-layer fluid temperature, [K] 
T∞ – ambient temperature, [K] 
ux, uθ, uy – velocity components, [ms–1] 
x – direction along the disk surface, [m] 
y – normal to the surface, [m] 

Greek symbols 

α – thermal diffusivity of the fluid, [m2s–1] 
e – dimensionless co-ordinate, (= x/λ), [–] 
η – dimensionless variable, [–] 
θ – azimuthal direction, [–] 
Θ – dimensionless temperature, [–] 

 

Figure 13. Dependence of average Nusselt the 
number on number of sinusoids for Pr = 0.71 
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Λ – combined rotation rate [= (a2 + ω2)1/2], [s–1] 
λ – wavelength, [m], m 
μ – dynamic viscosity of the fluid, [kgm–1s–1] 
n – kinematic viscosity of the fluid, [m2s–1] 

τr, τθ – radial and tangential wall shear 
stresses, [kgm–1s–2] 

ψ(x, y), ϕ(x, y) – stream functions, [m2s–1] 
ω – rotation rate, [s–1]
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