HEAT TRANSFER ON SIMPLIFIED PRE-PERIOD STAGE OF TUNNEL FIRE

by

Hungwei LIUa,b,c and Wei YAOd*

aProfessional Engineer for CIVIL, Hong-Chu Construction Ltd., Taoyuan, Taiwan
bDepartment of Civil and Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
cDepartment of Civil and Mineral Engineering, University of Ton, Toron, Canada
dState Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydro Power, Sichuan University, Chengdu, China

Original scientific paper
https://doi.org/10.2298/TSCI180810113L

Tunnel fire is a part of applied thermal problems. With increase of transient temperature of the tunnel fire on the structure surface (i.e. tunnel lining), the heat transfer from the surface is possibly varying transient temperature distribution within the structure. The transient temperature distribution is also possibly damaging the composition of structure (micro-crack) because of critical damage temperature. Therefore, the transient temperature distribution has a significantly important role on defining mechanical and physical properties of structure and determining thermal-induced damaged region. The damage at pre-period stage of tunnel fire is perhaps more significant than that at the other period stages because of thermal gradient. Consequently, a theoretical model was developed for simplifying complicated thermal engineering during pre-period stage of tunnel fire. A hollow solid model in a combination of dimensional analysis and heat transfer theory with Bessel’s function and Duhamel’s theorem were employed to verify a theoretical equation for dimensionless transient temperature distribution under linear transient thermal loading. Experimental and numerical methods were also adopted to approve the results from this theoretical equation. The heating rate is a primary variable for discussing dimensionless transient temperature distribution on three means. The heating rate of 10191.10 and 240 °C/min were applied to experimental and numerical studies. The experimental and numerical results are consistent with the theoretical solution, successfully verifying that the theoretical solution can predict the dimensionless transient temperature distribution well in field. This equation can be used for thermal/tunnel engineers to evaluate the damaged region and to obtain the parameters related to dimensionless transient temperature distribution.

Key words: Duhamel’s theorem, dimensional analysis, temperature, transient thermal loading

Introduction

Thermal engineering widely exists in the industry and the gradient of temperature possibly leads to damage in structures and materials during the service period, such as the cylinder in vehicles (such as combustion chamber wall of Engine) [1], aerospace/petroleum structures

*Corresponding author, e-mail: stevenyao84@163.com
Liu, H., et al.: Heat Transfer on Simplified Pre-Period Stage of...

[2], rock drilling [3], ore crushing, deep petroleum boring, geothermal energy extraction [4], deep burial of nuclear waste [5], carbon capture and storage [6, 7], tunnel fire [8, 9], and electrical wire cover topic [10], fig. 1. Those issues are directly related to heat transfer and temperature distribution in solids [9, 11-17]. Understanding the heat transfer process can predict and prevent the damage in solids during structure service period, which is significant for the structure safety. In addition, temperature increases rapidly and linearly up to thousands of Celsius degrees when a tunnel fire occurs and the heating rate is approximately 240 °C/min. The high temperature on the surface of the structure or surround mass rock lasts during the entire tunnel fire period, fig. 2. However, the significant damage of tunnel and surround mass rock possibly occurs during the pre-period stage of tunnel fire, which is the heating stage shown as a red-dashed-line ellipse in fig. 2. The temperature on surface at heating stage is also called as outer transient temperature. Furthermore, the damage may be induced by thermal gradient which is from transient temperature distribution within the material body. It is worthy noted that the variety of temperature gradient in solids at the pre-period stage is more severe than that during the constant temperature stage. It is thus important to observe the transient temperature distribution within the body at the pre-period stage, heating stage, M, of fig. 2, and predict the transient temperature distribution within the structures in many thermal engineering applications.

A myriad of researchers have discussed about thermal loading issues. Segall [18] studied thick-walled piping under polynomial transient thermal loading by using Duhamel’s relationship. Shahani and Nabavi [19] provided an analytical temperature distribution solution for a thick-walled cylinder, the inner surface of which is subjected to time-dependent generalized thermal boundary conditions by using finite Hankel transform. Radu et al. [20] developed analytical solutions for temperature distribution in a hollow cylinder under sinusoidal transient thermal loading. Marie [21] proposed an extension of temperature and stress solution for a vessel or pipe under a linear shock or cyclic variation of fluid temperature and a simple analytical solution for thermal shock or cyclic variations of fluid temperature was found by using the linear shock resolution approach. Eraslan and Apatay [22] developed an analytical model for the prediction of thermal loading into a cylinder subjected to periodic boundary condition and the transient temperature distribution in the cylinder is obtained by using Duhamel’s theorem. Although a lot of studies have been conducted for the temperature distribution of a hollow cylinder, the behavior of the temperature distribution of the hollow cylinder was not effectively compared and investigated using those approaches since a number of parameters exist in those models. Different models are not comparable when
the parameters (e.g., inner and outer radius, thermal diffusivity, time, etc.) are changed. It is thus necessary to develop a mathematical model with dimensionless parameters, in which the non-dimensional temperature distribution with different parameters can be easily predicted and compared by engineers and industrial designers.

As previously mentioned, in order to simulate the pre-period stage of tunnel fires, fig. 3, this paper aims to build a theoretical model for obtaining the dimensionless transient temperature distribution (DTTD) within Hollow-solid model (HSM) under linear transient thermal loading (LTTL), fig. 3. The theoretical model is based on heat transfer theory under cylinder co-ordinates [23, 24] and complies with dimensional analysis, Bessel’s function and Duhamel’s theorem. This model is verified by using experimental and numerical method.

Dimensional analysis [25] has been made using in the PDE of heat conduction Duhamel’s theorem for temperature distribution [23], and results obtained by theoretical solution are compared with those obtained from experimental and finite element method (FEM).

Dimensionless temperature distribution of a hollow solid under LTTL

Dimensional analysis is a useful tool to minimize the number of physical dimensional parameters in a mathematical model and to produce new equivalent dimensionless parameters. These new equivalent dimensionless parameters can be used to comprehensively analyze the problem and reduce experimental/numerical work [26]. Based on the dimensional analysis and the assumption of the identical temperature on the surface, the temperature distribution $T(r, t)$ of HSM under LTTL can be expressed:

$$T(r, t) = f(b, a, r, T_r, M_t, t, t_f, \alpha_p)$$ (1)

where b, a, and r are outer, inner, and arbitrary radius, respectively, T_r – the room temperature, which is the model material’s temperature in the unstrained state, M_t are initial temperature of linear transient thermal loading, t – the arbitrary time, t_f – the time when the tensile or yield stress is larger than the tensile strength of solid, and α_p – the thermal diffusivity of solid which is unchanged by around stresses.

The LTS (length L, temperature T, and time S) unit system is adopted to analyze a, T, and t. The DTTD formula from eq. (1) is re-written:

$$\frac{T(r/a, t)}{T_r} - 1 = f \left(\frac{b}{a}, \frac{r}{a}, \frac{M_t}{T_r}, \frac{t}{t_f}, \frac{\alpha_p}{a^2 t_f} \right)$$ (2)

or

$$\tilde{\theta}(\Gamma, \iota) = f (\Gamma_b, \Gamma, \tilde{M}_t, \tilde{\iota}, \tilde{\alpha}_p)$$ (3)

where $\tilde{\theta}(\Gamma, \iota)$ is the dimensionless temperature distribution of a hollow solid, Γ_b and Γ are the dimensionless outer and arbitrary radius, respectively, \tilde{M}_t – the dimensionless LTTL, \tilde{M}_t – the
dimensionless heating rate, \(\dot{t} \) – the dimensionless time, \(\tilde{\alpha}_p \) – the dimensionless thermal diffusivity of solids.

The DTTD has to satisfy the heat diffusion equation within the cylinder co-ordination:

\[
\frac{\partial^2 \tilde{\theta}}{\partial \Gamma^2} + \frac{1}{\Gamma} \frac{\partial \tilde{\theta}}{\partial \Gamma} = -\frac{1}{\tilde{\alpha}_p} \frac{\partial \tilde{\theta}}{\partial \dot{t}}
\]

(4)

The temperature distribution is necessary to solve eq. (4). The differential equations are the second order with respect to a single independent variable \(\theta \). In the case of this study, the solution \(\theta(\Gamma, \dot{t}) \) also satisfies two conditions: (a) Boundary condition, \(\dot{t} \geq 0 \): The first boundary condition is the applied temperature on the internal hole surface of the structure at \(\Gamma = 1 \):

\[
\tilde{\theta}(1, \dot{t}) = M \dot{t} - 1
\]

(5)

The second boundary condition of interest is the specified convection and radiation at \(\Gamma = \Gamma_b \), it should yield:

\[
\tilde{\theta}(\Gamma_b, \dot{t}) = 0
\]

(6)

where \(M \) is assumed as a constant in pre-period stage of tunnel fire, fig. 2 and (b) Initial condition \((1 \leq \Gamma \leq \Gamma_b) \):

\[
\tilde{\theta}(\Gamma, 0) = 0
\]

(7)

The \(\tilde{\theta}(1, \dot{t}) \) is a known time-dependent function representing the thermal boundary condition applied on the internal hole surface of the structure.

The boundary and initial condition on the inner surface of a hollow cylinder solid can be measured or given through fire/temperature monitor in the structures. Thus, the DTTD under LTTL can be calculated by applying Duhamel's theorem and Bessel's function.

According to Duhamel's theorem, the surface of material under the HSM with LTTL is subjected to identical thermal boundary condition. Hence, it is addressed that a DTTD formula with a unit temperature from inner-hole surface, \(\Gamma = 1 \), can be diffused by a variable, \(\phi \), and eq. (4) can be re-written:

\[
\frac{\partial^2 \phi}{\partial \Gamma^2} + \frac{1}{\Gamma} \frac{\partial \phi}{\partial \Gamma} = -\frac{1}{\tilde{\alpha}_p} \frac{\partial \phi}{\partial \dot{t}}
\]

(8)

The aforementioned two conditions should be re-written the following conditions for satisfying the eq. (8): The boundary condition \((\dot{t} \geq 0) \):

\[
\tilde{\phi}(1, \dot{t}) = 1
\]

(9)

\[
\tilde{\phi}(\Gamma_b, \dot{t}) = 0
\]

(10)

and the initial condition, \(1 \leq \Gamma \leq \Gamma_b \):

\[
\tilde{\phi}(\Gamma, 0) = 0
\]

(11)

However, because the mentioned boundary condition is a non-homogeneous boundary conditions, the boundary cannot be solved on mathematical method, it should be transferred to a homogenous boundary condition. Therefore, the \(\phi(\Gamma, \dot{t}) \) is partitioned into two parts:

\[
\tilde{\phi}(\Gamma, \dot{t}) = U(\Gamma, \dot{t}) + \psi(\Gamma)
\]

(12)

where \(U(\Gamma, \dot{t}) \) and \(\psi(\Gamma) \) are location-time function and geometrical function, respectively. The function \(\psi(\Gamma) \) can be obtained:
\[\psi(\Gamma) = \frac{\ln\left(\frac{\Gamma_{\text{b}}}{\Gamma}\right)}{\ln\left(\Gamma_{\text{b}}\right)} \]

Assuming \(U(1,\tilde{t}) = U(\Gamma_{\text{b}},\tilde{t}) = 0, U(\Gamma, 0) = -\psi(\Gamma) \), then:

\[U(\Gamma, \tilde{t}) = R_{\nu} \left(\Gamma\right) T_{\nu}(\tilde{t}) \]

where \(R_{\nu}(\Gamma) \) and \(T_{\nu}(\tilde{t}) \) are related to the geometrical function and time domain function. Consequently, \(T_{\nu}(\tilde{t}) \) is substituted into eq. (14) to rewrite the boundary as a homogeneous boundary conditions and the following initial condition:

\[U(\Gamma, 0) = \sum_{m=1}^{\infty} C_{\nu} R_{\nu}(\beta_{m}, \Gamma) = -\psi(\Gamma) \]

Based on the heat transfer theory \[23\], \(C_{\nu} \) and \(R_{\nu}(\beta_{m}, \Gamma) \) can be obtained here and \(\beta_{m} \) is the positive roots of transcendental equation \(m = 1, 2, 3, \ldots \). Thus, a DTTD diffusing formula with a unit temperature within the solid from inner-hole surface can be obtained:

\[\hat{\phi}(\Gamma, \tilde{t}) = \frac{\ln\left(\frac{\Gamma_{\text{b}}}{\Gamma}\right)}{\ln\left(\Gamma_{\text{b}}\right)} - \frac{\pi^2}{2} \sum_{m=1}^{\infty} \beta_{m}^2 \left[J_{0}(\beta_{m}) J_{0}(\beta_{m}) - J_{0}(\beta_{m}) J_{0}(\beta_{m}) \right] \]

\[e^{-\kappa_{\text{LTTL}} \Delta \Gamma} \left[J_{0}(\beta_{m} \Gamma) J_{0}(\beta_{m} \Gamma) \right] \int_{\Gamma} \left[J_{0}(\beta_{m} \Gamma) J_{0}(\beta_{m} \Gamma) \right] \ln\left(\frac{\Gamma}{\Gamma_{\text{b}}}\right) d\Gamma \]

According to the Duhamel’s theorem \[18, 22, 23, 27\] for LTTL, the dimensional approaching solution of DTTD obtained by imposing eqs. (6) and (16):

\[\hat{\theta}(\Gamma, \tilde{t}) = \Theta(\chi - \eta) \]

where

\[\Theta = \frac{\hat{M}}{\ln(\Gamma_{\text{b}}/\Gamma)} \chi = \ln\left(\frac{\Gamma_{\text{b}}}{\Gamma}\right) i, \eta = \frac{\pi^2}{2} \sum_{m=1}^{\infty} \beta_{m}^2 \left[J_{0}(\beta_{m}) J_{0}(\beta_{m}) - J_{0}(\beta_{m}) J_{0}(\beta_{m}) \right] \]

\[\frac{1}{\kappa_{\text{LTTL}}} \left[1 - e^{-\kappa_{\text{LTTL}} \Delta \Gamma} \right] \sum_{m=1}^{\infty} \left[J_{0}(\beta_{m} \Gamma) J_{0}(\beta_{m} \Gamma) \right] \ln\left(\frac{\Gamma}{\Gamma_{\text{b}}}\right) \Delta \Gamma \]

The \(\Theta_{\nu} \) is the DTTD at any instantaneous time at steady-state heat conduction, \(\Theta_{\nu} \) – the DTTD at whichever instantaneous time at unsteady-state heat conduction.

As a result, the diffusing solution of DTTD under LTTL from the inner-hole surface was defined by steady-state function minus unsteady-state function in certain time. For arbitrary transient thermal loading, eqs. (3) and (8) can be used to calculate the corresponding DTTD.

\[\psi(\Gamma) = \frac{\ln\left(\frac{\Gamma_{\text{b}}}{\Gamma}\right)}{\ln\left(\Gamma_{\text{b}}\right)} \]

Assuming \(U(1,\tilde{t}) = U(\Gamma_{\text{b}},\tilde{t}) = 0, U(\Gamma, 0) = -\psi(\Gamma) \), then:

\[U(\Gamma, \tilde{t}) = R_{\nu} \left(\Gamma\right) T_{\nu}(\tilde{t}) \]

where \(R_{\nu}(\Gamma) \) and \(T_{\nu}(\tilde{t}) \) are related to the geometrical function and time domain function. Consequently, \(T_{\nu}(\tilde{t}) \) is substituted into eq. (14) to rewrite the boundary as a homogeneous boundary conditions and the following initial condition:

\[U(\Gamma, 0) = \sum_{m=1}^{\infty} C_{\nu} R_{\nu}(\beta_{m}, \Gamma) = -\psi(\Gamma) \]

Based on the heat transfer theory \[23\], \(C_{\nu} \) and \(R_{\nu}(\beta_{m}, \Gamma) \) can be obtained here and \(\beta_{m} \) is the positive roots of transcendental equation \(m = 1, 2, 3, \ldots \). Thus, a DTTD diffusing formula with a unit temperature within the solid from inner-hole surface can be obtained:

\[\hat{\phi}(\Gamma, \tilde{t}) = \frac{\ln\left(\frac{\Gamma_{\text{b}}}{\Gamma}\right)}{\ln\left(\Gamma_{\text{b}}\right)} - \frac{\pi^2}{2} \sum_{m=1}^{\infty} \beta_{m}^2 \left[J_{0}(\beta_{m}) J_{0}(\beta_{m}) - J_{0}(\beta_{m}) J_{0}(\beta_{m}) \right] \]

\[e^{-\kappa_{\text{LTTL}} \Delta \Gamma} \left[J_{0}(\beta_{m} \Gamma) J_{0}(\beta_{m} \Gamma) \right] \int_{\Gamma} \left[J_{0}(\beta_{m} \Gamma) J_{0}(\beta_{m} \Gamma) \right] \ln\left(\frac{\Gamma}{\Gamma_{\text{b}}}\right) d\Gamma \]

According to the Duhamel’s theorem \[18, 22, 23, 27\] for LTTL, the dimensional approaching solution of DTTD obtained by imposing eqs. (6) and (16):

\[\hat{\theta}(\Gamma, \tilde{t}) = \Theta(\chi - \eta) \]

where

\[\Theta = \frac{\hat{M}}{\ln(\Gamma_{\text{b}}/\Gamma)} \chi = \ln\left(\frac{\Gamma_{\text{b}}}{\Gamma}\right) i, \eta = \frac{\pi^2}{2} \sum_{m=1}^{\infty} \beta_{m}^2 \left[J_{0}(\beta_{m}) J_{0}(\beta_{m}) - J_{0}(\beta_{m}) J_{0}(\beta_{m}) \right] \]

\[\frac{1}{\kappa_{\text{LTTL}}} \left[1 - e^{-\kappa_{\text{LTTL}} \Delta \Gamma} \right] \sum_{m=1}^{\infty} \left[J_{0}(\beta_{m} \Gamma) J_{0}(\beta_{m} \Gamma) \right] \ln\left(\frac{\Gamma}{\Gamma_{\text{b}}}\right) \Delta \Gamma \]

The \(\Theta_{\nu} \) is the DTTD at any instantaneous time at steady-state heat conduction, \(\Theta_{\nu} \) – the DTTD at whichever instantaneous time at unsteady-state heat conduction.

As a result, the diffusing solution of DTTD under LTTL from the inner-hole surface was defined by steady-state function minus unsteady-state function in certain time. For arbitrary transient thermal loading, eqs. (3) and (8) can be used to calculate the corresponding DTTD.
Experimental study

In this study, the cement-based solid (mortar) is adopted to verify the theoretical equation of DTTD with LTTL. Components of the mortar were as follows. Matrix is made from Type-I Portland cement, which is produced from the Taiwan Cement Corporation. A natural crystalline quartz (high purity, 99% SiO₂) with a uniform gain (fine and coarse sand diameter range from 0.718 to 1.19 mm; D₅₀ = 1.0 mm). The mixture proportion of the cement, water, and sand is 1:0.5:2.75. The HSM with LTTL tests were conducted on square-shaped specimen, which was prepared with length × height × width = 140 × 140 × 50 mm and a circular hole with 20 mm diameter in the center of the specimen. The thermal diffusivity coefficient of mortar, αₚ, after curing 28-day in water is 1.23 × 10⁻⁶ (m²/s). To eliminate the effect of pore-water on the temperature distribution measurement, the mortar specimen was heated at 105 °C in the furnace before the experiment. The heating rate (2 °C/min) in the furnace is slow enough to avoid the thermal-induced stress in the specimen. The chemical change of cement-based material is not considered in this study because the temperature is lower than the critical temperature for the chemical change.

A heating bar in the circular hole was applied to heating the specimen. The heating rate capacity and the highest temperature of the heating bar are approximately 10-30 °C/min and 350 °C, respectively. For measuring the temperature distribution within specimen, five thermo-couple points are chosen in the specimen. Because of a non-linear temperature distribution, the locations of these points are chosen as fig. 4 and marked as 1-4, and 7. Each thermo-couple was arranged in a half of width of specimen, 25 mm. The measuring device of the thermocouples includes a measurement system (NI-9213) and controlling software (LabVIEW program) developed by the Nation Instrument Company. This high-density thermocouple measurement device designed for higher-channel-count bus-powered systems was adopted for measuring and recording the temperature and the measuring error of the thermocouples and device is lower than 3 ~ 4 °C.

The temperature of the bar on the inner-hole surface (Γ = 1) is from room temperature (Tᵣ = 26 °C) to the critical temperature (T_f = 102 °C), which is addressed by fracture occurrences in the specimen. The heating lasted approximately 7 minutes. It is noted that the fracture occurrence means that the maximum tensile stress in the certain location of the specimen is equal to the tensile strength of the material. Thus, at least a primary crack was produced at the certain location of the materi-
al, leading to the transform from continuous to discontinuous deformation. Further, the heating rate, M, is approximately 10.191 °C/min, fig. 4. In addition, the temperature history at each of thermo-couple position was illustrated in fig. 4. Each measured temperature at the time of fracture occurrence and the DTTD derived from the theoretical approach are shown in fig. 5.

Numerical analysis

In this study, the DTD of HSM with LTTL was simulated using an explicit non-linear finite element code, ABAQUS/Standard software. In this simulation, the temperature on the surface of structure solid and heat transfer within the structure solid was considered. An element component of thermal-mechanical element (C3D8T) was applied to the HSM with LTTL. The C3D8T element is a coupled displacement-temperature 8 nodes solid element, which are Gauss integration points. Such solid element is known to present some locking behavior, both shear and volumetric locking [28]. The HSM with LTTL simulation was conducted on a half square-shaped model with length × height × width = 2 × 1 × 0.001 m and a half of circular hole with 2 cm diameter in the center of the model, as shown in fig. 6. Based on the mesh sensitivity analysis, the element distribution was selected as 35048 elements in the half of simulation model with the mesh segmentation using radial reflection with magnification of 1.03 times.

Thermal diffusivity coefficient of the rock material is 0.68×10^{-6} m2/s into the simulation model for analyzing the DTTD. It is noted that this coefficient for rocks was generally in the range between approximate $0.68-10^{-6}$ and $1.5-10^{-6}$ m2/s. The initial temperature in the whole model is 30 °C. Two heating rates, M, on internal hole surface were simulated, i.e., 10 °C/min and 240 °C/min for $\Gamma_b = 100$. The 10 °C/min and 240 °C/min are used in both the experiments and the simulations for the case of tunnel fire, fig. 2, respectively. The both cases are employed to verify the theoretical DTTD equation. The temperature on the surface increases from 30-600 °C. The maximum temperature in the simulation is discussed because the critical damaged temperature of the rock and cement-based material is usually in the range of 450 and 550 °C [11, 29-32]. The numerical simulation result and the theoretical curves for these two cases are shown in figs. 7 and 8, respectively. The thermal engineers and designers can follow the

![Figure 6. Geometry, mesh segmentation, boundary, and initial conditions, and the positions of output data of numerical method](image_url)

![Figure 7. Dimensionless temperature distribution with $M = 10$ °C/min$^{-1}$](image_url)

![Figure 8. Dimensionless temperature stress distribution with $M = 240$ °C/min$^{-1}$](image_url)
temperature distribution of the materials, \(i.e.,\) rock and cement-based material in this study to assess the thermal-induced damage region for the design and repair period of structures.

Discussions

The accuracy of the numerical and analytical solutions for the temperature response significantly depend on the size of the incremental step in the \(T\). Due to the application of the complex mathematical series expansions, the solutions are exhibited as discrete points. Therefore, a smoothing technique based on the polynomial fitting of analytical distributions are used in this study \([20]\). In addition, the number of Bessel’s roots, \(\beta_{m}\), has been checked for obtaining the right analytical solutions. In this study, the analytical DTTD solution and the DTTD from experiments are compared at the same heating rate for verifying the theoretical equations for solving the DTTD. In the experiments, the heating rate and the time of brittle fracture occurrence are 10.191 °C/min and about 7 minutes, respectively. At the same heating rate and heating period, the analytical DTTD solutions, \(i.e.,\) \(\theta(\Gamma_{b}, t)T_{r}\), were also calculated utilizing the numeric computing method through MATLAB. In addition, the theoretical temperature distribution is shown as a line in fig. 6, and the temperatures at the time of brittle fracture occurrence for measurement positions in fig. 4 are illustrated as dots in fig. 6. It indicates that the results from the experimental measurement (points) and the theoretical approach (line) have a good agreement, verifying that the theoretical method proposed in this study is valid to predict the DTTD of HSM with LTTL.

Moreover, the numerical simulation is conducted with two heating rates: 10 °C/min and 240 °C/min. Meanwhile, these two heating rates and the time of receiving 600 °C were substituted into the numeric computing program of theoretical approach to obtain the DTTD, \(\theta\), which is shown as a red line in fig. 7 (\(M = 10\) °C/min) and fig. 8 (\(M = 240\) °C/min), respectively. The results derived from the numerical simulation are shown as cross in both figs. 7 and 8. The comparison between the results from the numerical simulation (cross) and the theoretical approach (line) indicates that the results from these two methods are consistent. As a result, the validity of the theoretical approach for calculating the DTTD of HSM with LTTL is approved.

Conclusions

Tunnel fire is a complex thermal engineering problem. A simplified theoretical approach for the DTTD of HSM with LTTL is proposed to obtain the temperature distribution during the pre-period stage of the tunnel fire. The dimensional analysis, Bessel’s function and Duhamel’s theorem are successfully used to achieve the theoretical equation for solving the DTTD. In this theoretical approach, only five variables need to be considered to calculate the temperature distribution during the heat transfer under linear transient thermal loading. In addition, the theoretical solutions are compared with the results derived from both experimental and numerical methods. All the results obtained from the theoretical prediction, the experimental measurement, and the numerical simulation at the same initial and boundary conditions are consistent. This successfully verifies that the simplified theoretical approach proposed in this study can predict the DTTD under LTTL well in field. Furthermore, the theoretical equation is valid for both the different initial and boundary conditions and the various material properties (\(e.g.,\) the thermal diffusivity coefficient, the geometry of structures), and thus can be also applied to the industrial design and thermal engineering, such as the electrical wire design and nuclear waste storage. Moreover, the damaged region within the structures may be determined by using the temperature distribution derived from this theoretical approach.
References

