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A novel Taylor expansion-based online modeling method is proposed for 

high-temperature forging process. The main innovation of this study is to 

propose a derivable index for high-temperature forging process. This 

derivable index, which can be evaluated by the discrete data points, is 

developed to determine the derivability of high-temperature forging process 

at any points. It is found that the proposed method can obviously improve 

the prediction accuracy comparing with the traditional TE online modeling 

method. 
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Introduction  

 

The nonlinearity, discontinuity and multi-factor influences of the practical industrial 

process make the mathematical model too complex to be accurately established [1]. These difficulties 

bring challenges to simulate the practical industrial process [2]. Especially, the accurate prediction and 

control of hydraulic press machine (HPM) is a great challenge in high-temperature forging process due 

to the high complexity and strong nonlinearity. 

To meet these challenges, data-driven modeling methods have been extensively studied 

over the past few decades [3]. Moreover, some data-driven modeling methods have been proposed and 

improved, such as the neural network (NN) method [4,5], the fuzzy method [6], and the support vector 

machines (SVM) [7]. However, for NN method, the number of layers and the neuron number at each 

layer are difficult to be determined [8]. Also, the largest problem of fuzzy method is the curse of 

dimensionality. In addition, SVM is time-consuming and cannot used for online modeling [9]. 

Moreover, almost all data-driven modeling methods have the over- or under-fitting problems when 

their model structures are not suitably selected. All aforementioned issues pose a great challenge to the 

online modeling for the practical process. Recently, Taylor expansion (TE) has been widely applied in 

system modeling [10]. According to the TE principle, any nonlinear system can be approximated by a 

polynomial [11]. However, two challenges should be met for TE method: (1) how to determine the 
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suitable model order in real time; (2) how to deal with the problem that the system may not be 

continuous and derivable at any points.  

In this study, a simple, effective and easily understandable online modeling method is 

proposed to model the practical high-temperature forging process. In the proposed method, the 

derivability criterion, which is a novel policy to deal with the limitation of traditional TE model, is 

developed.  

Problem statements and modeling basic 

In this section, a novel approach for identifying discontinuous and non-differentiable 

point is proposed to select the suitable model order. Then, the high accurate online model can be 

established for the practical process. The method is based on the theorem of function continuity and 

derivative, which is presented as follow. 
Theorem 1 Let ( )y f x  be defined on 0 0( , )x x   . The sufficient and necessary condition for the 

existence of 0'( )f x  is that 0' ( )f x  and 0' ( )f x  are both significative, and 

0 0' ( ) ' ( )f x f x                                    (1) 
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0
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According to the above-presented theorem, the derivability criterion for the practical 

process is proposed as follow: 

Proposition 1 If the dynamic characteristics of the practical process at time t  is 

represented by ( ) ( ( ))y t f x t , the sufficient and necessary condition for the derivability of 
( ) ( ( ))y t f x t  is  

( 1) ( ) ( ) ( 1)y k y k y k y k

t t
   

 
 

                         (2) 

where the derivable index 0  . 

Novel online modeling method 

Taylor expansion-based models 

For the practical time-varying system, TE models are used to predict the kth output of 

system according to the first k-1 inputs and outputs. Generally, TE models can be classified into 

several categories: zero-order model, linear (first-order) model, second-order model, three-order 

model, and high order model. For the practical time-varying high-temperature forging process, the 

model order only selected as 0, 1, 2, and 3 in this study. 
The predict model can be expressed as:   

( 1) ( ( ), ( ))y k f u k y k                               (3) 

where ( )u k  and ( )y k  are input and output, respectively. ( 1)y k  is the predictive output. Then, TE 

models can be presented as: 

Zero-order model: 
( 1) ( ( ), ( )) ( )y k f u k y k y k                             (4) 

Linear model: 
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Second-order model: 
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Third-order model: 

 

2
2

2

2 2 3
2 3

2 3

1
( 1) ( ( ), ( )) ( ) ( ( ) ( 1)) ( ( ) ( 1)) ( ( ) ( 1))

2!

1
             2 ( ( ) ( 1))( ( ) ( 1)) ( ( ) ( 1)) ( ( ) ( 1))

3!

             

f f f
y k f u k y k y k u k u k y k y k u k u k

u y u

f f f
u k u k y k y k y k y k u k u k

u y y u

  
             

   
               


3 3

2 2
2 2

3
3

3

3 ( ( ) ( 1)) ( ( ) ( 1)) 3 ( ( ) ( 1))( ( ) ( 1))

             ( ( ) ( 1))

f f
u k u k y k y k u k u k y k y k

u y u y

f
y k y k

y

 
        

   


    

   
 (7) 

Parameters identification 

Due to its simple polynomial structure, the multiple nonlinear regression method is used 

for parameter identification.The coefficients of zero-order model are known, but those of linear, 

second-order and third-order models need to be further identified. 

The linear model, Eq. (5), can be transformed into:  

11 12( 1) ( ) ( ( ) ( 1)) ( ( ) ( 1))y k y k a u k u k a y k y k                         (8) 

where 11a  and 12a  are the unknown parameters. The multiple nonlinear regression model can be 

expressed as: 

Y XB                                       (9) 
where the matrices are presented as: 
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Similarly, the parametersof second-order and third-order models can be identified by the 

multiple nonlinear regression method. 

Selectionof Model 

The confirmation of non-differentiable points is the key step to determine model order. The 

sufficient and necessary condition for the first-order derivability of the system at current points is 

proposed in proposition 1, and can be rewritten as: 
( 1) 2 ( ) ( 1)y k y k y k

t
   




                         (10) 

Similarly, the sufficient and necessary condition for the second-order derivability of the system at 

current points can be deduced as: 
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2
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


                   
(11) 

The sufficient and necessary condition for the third-order derivability of the system at current points 

can be deduced as: 

3

( 1) 4 ( ) 6 ( 1) 4 ( 2) ( 3)
2

( )

y k y k y k y k y k

t
       




     ,         (12) 

Obviously, three, six and ten groups of data are required to identify the parameters of the 

linear, second-order and third-order models, respectively. Thus, the online model is also determined by 

the number of differentiable points. The sign flag  is introduced to mark the non-differentiable points. 

In the local interval, if 1 2k flag   , the practical time-varying system can only be approximated by 

zero-order model, or approximated by linear model at least. If 1 5k flag   , the practical time-varying 

system can be approximated by linear model, or approximated by second-order model at least. If 
1 9k flag   , the practical time-varying system can be approximated by second-order model, or 

approximated by third-order model at least. 

After the determination of non-differentiable points and the number of differentiable points, 

the model order can be confirmed. To predict the (k+1)th output of the practical time-varying system, 

the procedure to determine the model order is demonstrated in the form of a binary tree as shown in 

Figure 1. According to Eq. (10), the first-order derivability of the (k-1)th output is determined by the kth, 

(k-1)th and (k-2)th outputs. If Eq. (10) is not satisfied, it means that the (k-1)th output is 

non-differentiable. Then, 1flag k  , and the model order 0n  . Otherwise, if 1 5k flag   , the 

model order 1n  . If 1 5k flag   , the second-order derivability of the (k-1)th, (k-2)th and (k-3)th 

outputs are determined by the kth, …, (k-5)th outputs. If Eq. (11) is not satisfied, it means that all or 

several of the (k-1)th， (k-2)th and (k-3)th outputs are not second-order differentiable, and the model 

order 1n  . Otherwise, if 1 9k flag   , the model order 2n  . If 1 9k flag   , the third-order 

derivability of the (k-2)th, …, (k-7)th outputs are determined by the kth,…, (k-9)th outputs. If Eq. (12) is 

not satisfied, it means that all or several of the (k-2)th, …, (k-7)th outputs are not third-order 

differentiable, and the model order 2n  . Otherwise, the model order 3n  . 

 

Figure 1. Determination of model order. 

The proposed online modeling method 

For the practical time-varying process, the proposed online modeling method can be 

summarized as follows: 
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Step1: Initialization. The initial inputs and outputs are preset, and 1flag  . 

Step2: Model selection. The process of determining model order is presented above. 

Step3: Parameter identification. The coefficients of models are identified by the multiple 

nonlinear regression method. 

Step4: Online awareness. The experiment data of the time-varying process are collected 

online. 

Step5: Re-initialization. When the predicted value (k 1)y   has been estimated, the truth 

value ( 1)y k   is known at a later time.  

Step6: Return to Step2 to carry out the next time-step modeling. 
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Figure 2.High-temperature forging experiment: (a) input; (b) output. 
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Figure3. Model output vs. real output: (a) the linear model; (b) the second-order model; (c)the 

third-order model; (d)the proposed model 
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Case study 

Practical High-Temperature Forging Case 

High-temperature forging is one of metal-forming technologies, and it can effectively 

decrease the deformation resistance of materials and improve the homogeneity of metal flow [12]. So, 

it is widely used in the manufacturing the components with complicated geometry and large 

deformation resistance [13, 14].A high-temperature forging experiment on a large HPM is used to 

verify the effectiveness of the proposed method. The aluminum alloy work piece is used in this 

high-temperature forging experiment. The sampling ratio of all sensors is one second, which is 

sufficient for this experiment. Figure 2showsthe practical pressure of cylinders and the practical 

velocity, respectively. In this research, the practical pressure of driven cylinders and the velocity of 

upper die are defined as the input and output, respectively.  

With the aid of the developed method, the mathematical model can be written as follows:  

      1 T( ), ,v k f k p k v k                               (13) 

where v , T and p  represent the velocity of upper die, temperature and the pressure of driven cylinders, 

respectively. Because the high-temperature forging experiment is conducted by isothermal die forging 

technology, the temperature is constant. So, the model can be simply expressed as follows:   

      1 ,v k f p k v k                                 (14) 

The effectiveness of the proposed modeling method is verified by comparing with the linear, the 

second-order and the third-order TE models. 

From Figure. 3, it is obvious that the proposed model outputs are closer to the real outputs. 

Thus, the proposed online modeling method could effectively obtain the model for the practical 

high-temperature forging process. The performances of the linear, the second-order and the third-order 

models are similar in the practical high-temperature forging case, as shown in Table 1. Clearly, the 

performance of the proposed model is much better than those of the traditional TE models.  

Table 1. Performance comparisons (
309

2

1

( )
k

e k

 , e  is modeling error) 

Method Performance 

Linear model 

Second-order model 

Third-order model 
Proposed model ( 51 10   ) 

0.0469 

0.0464 

0.0461 

0.0183 

Conclusion 

Based on the Taylor expansion, a novel online modeling method is proposed to 

approximate the practical time-varying system. The derivability criterion of online model is developed 

according to the Taylor expansion principle, and the derivable index is introduced to achieve the 

transition from continuous process to discrete process. Finally, the practical high-temperature forging 

experiment demonstrates that the proposed method can effectively model the time-varying industrial 

process. 
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Nomenclature 

 
v –velocity of upper die,[mm/s] p –pressure of driven cylinders,[N] 

T –temperature,[ ]℃   
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