THE OPTIMIZATION OF PRESSURE CONTROLLER FOR DEEP EARTH DRILLING

by

ZhiQiang HEa,b, Ling CHENc, Tong LUa,b, Jing XIEa,b

a State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu610065, China
b Key Laboratory of Deep Underground Science and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
c School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China

Obtaining samples of deep in-situ conditions is first step to explore the mysteries of the earth requires. In view of the current problems of insufficient pressure maintaining capacity of the existing equipment, we independently developed the in-situ fidelity coring system and designed the osmotic pressure controller based on the geometry of square cover. The finite element method is used to analyze the pressure maintaining capacity of the pressure controller. It is found that it would produce large deformation and stress concentration when the pressure was applied on, resulting in low pressure maintaining capacity. Then the structural optimization schemes of conical sealing contact surfaces with 25, 35, 40 and 45 degrees apex angles and spherical sealing contact surface are proposed, and the spherical contact surface structure is found to be optimal. Finally, the material is optimized, and a higher strength material such as 45CrNiMoVA alloy is used. Based on the pressure controller with spherical contact surface, the pressure maintaining capacity increased to nearly 70 MPa. The research results obtained in this paper provide the basis for the development of the coring system, the deep exploration of the earth and the establishment of rock mechanics theory.

Key words: deep in-situ fidelity coring system, Osmotic pressure controller, Numerical simulation, Optimization analysis.

Introduction

The shallow mineral resources of the earth has been gradually exhausted, and more and more attentions have been paid to the mineral exploitation in deep earth [1]. Deep mining is an on-going mining industry [2, 3]. At present, the basic research of deep mining is not sufficient, and it is necessary to establish a deep in-situ rock mechanics theoretical system. For example, the relationship between the mechanical environment and the fracture evolution of deep engineering rock mass is still unclear [4]. Therefore, it is essential to develop deep in-situ fidelity coring (maintaining
in-situ osmotic pressure, etc.) system to maintaining in-situ conditions, which provides a basis for further test.

Scientific drilling has become an indispensable and important means for human beings to solve major problems such as resources, disasters and the environment. Drilling programs have caused widespread concern worldwide, Including Mohole Drilling Project, Deep Sea Drilling Project, and so on [5-9]. However, the strong mechanical disturbance of the traditional coring system destroys the authenticity of osmotic pressure[10]. And in the field of deep drilling in the mainland, the main focus is still on the core drilling technology [11]. Only ocean drilling has taken the lead in focusing on seafloor sediment fidelity coring technology[12]. However, the pressure maintaining capacity of coring system hasn’t been developed. Hydrate Auto-clave Coring Equipment (HY-ACE) used a Fu-gro Pressure Corer (FPC) and Rotary Corer (HRC) with capacity of 25MPa [13].Japan developed the Pressure Temperature Core Sampler (PTCS) which has capacity of 30MPa [14]. The capacity of the Multiple Autoclave Corer (MAC) and the Dynamic Autoclave Piston Corer (DAPC) used by R.V.SONNE is 20MPa [15, 16]. The pressure maintaining capacity of the fidelity corer designed respectively by Zhejiang University and The First Institute of Oceanography is 30MPa [17-19].

It can be seen that the pressure maintaining capacity of the above mentioned coring system is not suitable to be applied for deep drilling in the mainland. Therefore, we independently developed the fidelity coring system and designed the osmotic pressure controller based on the geometry of square cover. The finite element method was used to analyze the pressure maintaining capacity of the pressure controller. Several optimization schemes were proposed for comparison, and the resulting optimization scheme with spherical contact surface structure was found to be optimal. The results obtained in this paper provide the basis for the development of the coring system, the deep exploration of the earth and the establishment of rock mechanics theory.

Pressure maintaining capacity analysis of developed pressure controller

Model construction

Based on developed pressure controller, numerical model on ANSYS platform was built after appropriate simplification, as shown in Fig. 1. Pressure controller consists of base and square cover. Height of base is 0.048 m. The inside and outside diameter is 0.0575 m and 0.0797 m. Inner sealing contact surface is a conical surface with a apex angle of 30 degrees and bottom circle with diameter of 0.0745 m, and coincides with the upper surface of the base, as shown in Fig. 2. There is a square cover structure placed above the pressure controller with thickness of 0.008 m. The bottom surface of the model is on the XOY plane, and the axis direction is in the negative direction of the Z axis.

![Figure 1. Pressure controller and numerical model](image)
Calculation parameters and boundary conditions

As the main functional structure, pressure controller which has high load-bearing capacity must be suitable for the deep in-situ fidelity coring. 20CrMnMo cementation steel was taken for pressure controller. Material parameters are shown in Tab. 1. The bilinear kinematic hardening constitutive model was used to calculate the model.

Table 1. Material parameters

<table>
<thead>
<tr>
<th>Materials</th>
<th>Elasticity modulus (Pa)</th>
<th>Poisson ratio</th>
<th>Density (kg/m³)</th>
<th>Yield stress (Pa)</th>
<th>Shear modulus (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20CrMnMo</td>
<td>2.07e11</td>
<td>0.254</td>
<td>7.87e3</td>
<td>8.85e8</td>
<td>8.25e10</td>
</tr>
</tbody>
</table>

The hydrostatic pressures corresponding to the depths of 1000m, 3000m, 5000m, 7000m and 10000m are 10MPa, 30MPa, 50MPa, 70MPa and 100MPa. These pressures were separately applied on the upper surface of square cover and some part of the base surface according to actual situation. Contact was set between square cover and the base, as shown in Fig. 2. Coefficient of friction is 0.12. Full displacement constraint was applied on the bottom of the base. X, Y displacement constraint were applied to the side, as shown in Fig. 3.

Results

The axial displacement and von mises stress contours of square cover calculated under various pressure conditions are shown in Fig. 4. Due to the limited space, the results at 10MPa, 50MPa, 70MPa are listed here.

Square cover is a symmetrical structure. To study the position where the maximum deformation occurs, the node on the upper surface of the square cover was taken as the displacement monitoring point, shown by the dotted line (AB) in Fig. 4a. The results of nodal axial displacement under various conditions are shown in Tab. 2 and Tab. 5.

Illustrated by displacement contours in Fig. 4, the maximum displacement value appears at the B point of upper surface of the square cover, while the displacement of the A point area is the smallest. As shown in Tab. 2 and Fig. 5, with the increase of pressure, the increasing trend of nodal displacement is more obvious and nodal displacement increases as well. The displacement differences between the maximum displacement and the minimum displacement of the node also significantly
increase, which are 0.12 mm, 0.34 mm, 0.58 mm, 0.89 mm, and 1.58 mm, respectively. Axial displacement (Z-axis positive direction) appears at the square cover at the same time of deforming. Characteristics of base and square cover under pressure made a better fit of these two, keeping the in-situ pressure in stable.

Illustrated by the Von Mises stress contours in Fig. 4, varying degrees of stress concentration which exceed the yield strength appears at the edge of square cover (E region in Fig. 4d). Pressure maintaining capacity is not insufficient. With the pressure increasing, the stress in D region at the center of the lower surface of the square cover (Fig. 4d) gradually increases to form a stress concentration area. In order to study this phenomenon, nodes on the lower surface in axial direction

<table>
<thead>
<tr>
<th>Contents</th>
<th>10MPa</th>
<th>30MPa</th>
<th>50MPa</th>
<th>70MPa</th>
<th>100MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
<td>0.03</td>
<td>0.11</td>
<td>0.18</td>
<td>0.26</td>
<td>0.43</td>
</tr>
<tr>
<td>Maximum value</td>
<td>0.15</td>
<td>0.45</td>
<td>0.76</td>
<td>1.15</td>
<td>2.01</td>
</tr>
<tr>
<td>Difference</td>
<td>0.12</td>
<td>0.34</td>
<td>0.58</td>
<td>0.89</td>
<td>1.58</td>
</tr>
</tbody>
</table>

Figure 4. Axial displacement and Von Mises stress contours of square cover

Figure 5. Axial displacement of node on the square cover
were taken as stress monitoring point, as shown by the dotted line in Fig. 4d. The nodal stress results under various conditions are shown in Tab. 3 and Fig. 6.

<table>
<thead>
<tr>
<th>Contents</th>
<th>Von Mises stress of nodes / MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10MPa</td>
</tr>
<tr>
<td>Minimum value</td>
<td>146.88</td>
</tr>
<tr>
<td>Maximum value</td>
<td>225.03</td>
</tr>
<tr>
<td>Difference</td>
<td>78.15</td>
</tr>
</tbody>
</table>

From the nodal stress calculation results in Tab. 3 and Fig. 6, maximum stress appears at the D region on the lower surface of the square cover, and the minimum stress appears at the C, F region on square cover. When pressure is 50MPa, some nodal stress values exceed yield strength and enter in yield stage. Meanwhile, as the pressure increases, the stress concentration in the D region of the square cover enhances. It can be seen from Fig. 6 that when the pressure is greater than 50MPa, partial regions of the square cover begin to enter the yield stage, and as the pressure increases, the yield area of the square cover gradually increase. Indicating that present structure needs improvement to meet the requirements of deep coring.

Fig. 7 shows the Von Mises stress contours of the base at several different pressure, the maximum stress of the base appears on the contact surface (as shown in G region in Fig. 7a). The value of maximum stress increases as the pressure increases. When the pressure is less than 70MPa, the maximum stress of the base is less than the yield stress. and when the pressure is 100MPa, the base begins to fail. Hence, base is harder to fail rather than the square cover under the same pressure condition.

In conclusion, the base is more reliable than square cover from the perspective of stress.
Optimal Analysis of Pressure Controller

Pressure maintaining capacity of pressure controller is unsatisfied at present, especially for the square cover, which needs to be improved urgently. However, due to the particularity of the structure, the thickness of the square cover cannot be optimized. It can only be optimized from the following two aspects: the geometrical structure of the contact surface and the material property.

Optimization of contact surface structure

Pressure controller with conical sealing contact surface

Contact surface of present pressure controller is conical surfaces with an apex angle of 30 degrees. Changing apex angle may have a great impact on the structure, so we changed apex angle to 25, 35, 40 and 45 degrees.

The maximum stress of the square cover of each scheme exceeded the yield strength under the pressure of 50MPa. Therefore, only the calculation results of the cover under the pressure of 30MPa are listed here. As shown in Fig. 8, in some cases, the axial displacement distribution of the cover is consistent with the present pressure controller. Meanwhile, stress concentration likewise appears at the E region (shown in Fig.8d). When the apex angle is 25 degrees, the stress concentration reaches 904MPa, which exceeds the yield stress, so this scheme is discarded.

Node on the surface of the square cover was used as the displacement monitoring point (dotted line AB in Fig. 8a), and node on the axis of the lower surface of the square cover was used as the displacement monitoring point as well (dotted line in Fig. 8d). The calculation results of 30MPa pressure are shown in Tab. 4. After comparison, it is found that optimization scheme with 40 degrees is optimal, and the pressure maintaining capacity of the square cover rise to 30MPa.
Table 4. Comparison of optimization schemes for contact surface with different apex angle

<table>
<thead>
<tr>
<th>Contents</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum displacement of square cover / mm</td>
<td>0.45</td>
<td>0.35</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>Displacement difference of square cover / mm</td>
<td>0.35</td>
<td>0.28</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>Maximum stress of square cover /MPa</td>
<td>601</td>
<td>611.90</td>
<td>545</td>
<td>556</td>
</tr>
<tr>
<td>Base / MPa</td>
<td>376</td>
<td>301</td>
<td>313</td>
<td>324</td>
</tr>
</tbody>
</table>

When pressure is 70MPa, the maximum stress of base is 775MPa, which is less than the yield stress. The stress is as high as 1040MPa when 100MPa is applied on, indicating that the base can withstand pressure of about 70MPa.

It can be concluded that the 40 degrees conical contact pressure controller has a pressure maintaining capacity of about 30MPa (based on the square cover pressure maintaining capacity).

Pressure controller with spherical contact surface

It is critical to ensure that the pressure maintaining capacity of square cover may not fall due to position or angular offset. Besides, the contact area of the base was enlarged to reduce stress concentration. We improved the conical contact surface to a spherical contact surface. The diameter of the bottom surface of the cone was taken as the diameter of the spherical.

Taking the results of 30MPa and 50MPa as an example. As shown in the axial displacement contours in Fig. 9, the minimum and maximum displacement still occur in the A and B regions respectively. They are all smaller than the displacement of the square cover with 40 degrees conical contact surface under the same pressure. Meanwhile, the displacement difference of the maximum and minimum displacement under the two pressure conditions is 0.19mm, 0.31mm, which is less than the value of 40 degrees conical contact surface. As shown in Fig. 9, the stress concentration in the E region almost completely disappears. On the contrary, there is still stress concentration in the D region of the square cover. When the pressure is 30MPa, the maximum stress is 566.9MPa, which is close to the value of 40 degrees conical contact surface. The maximum stress exceeds the yield stress when the pressure is 50MPa. Therefore, the pressure maintaining capacity of square cover with spherical contact surface is about 30MPa.

When the pressure is 100MPa, the maximum stress of base still distributes on the contact face with the square cover. The maximum stress is 644MPa, less than the yield stress, and is better than the 40 degrees conical contact face.

In summary, pressure controller with the spherical contact surface is optimal in above mentioned structural optimization schemes. And the pressure maintaining capacity is about 30MPa.

![Axial displacement and Von Mises stress contours of square cover of pressure controller with spherical contact surface](image)
Material property optimization

Structural optimization can only improve its pressure maintaining capacity partially. It is necessary to choose better materials to meet the requirements of deep coring. The 45CrNiMoVA alloy is taken as an example, and the parameters are shown in Tab. 5.

Table 5 Parameters of 45CrNiMoVA alloy

<table>
<thead>
<tr>
<th>Materials</th>
<th>Elastic Modulus(Pa)</th>
<th>Poisson ratio</th>
<th>Density (kg/m3)</th>
<th>Yield stress(Pa)</th>
<th>Shear modulus(Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45CrNiMoVA</td>
<td>2.14e11</td>
<td>0.29</td>
<td>7.83e3</td>
<td>1.33e9</td>
<td>8.28e10</td>
</tr>
</tbody>
</table>

After the material is optimized, the calculation results of square cover with spherical contact surface are shown in Tab. 6. Obviously, the deformation and stress of the square cover have dropped. When the pressure reaches at 70MPa, the maximum stress is 1327.7MPa, which is close to the yield stress, indicating that the pressure maintaining capacity of the square cover is close to 70MPa.

Table 6 Results of square cover of pressure controller with spherical contact surface after material optimization

<table>
<thead>
<tr>
<th>Pressure</th>
<th>The maximum displacement / mm</th>
<th>Displacement difference / mm</th>
<th>The maximum Von Mises stress / MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>50MPa</td>
<td>0.38</td>
<td>0.30</td>
<td>945.35</td>
</tr>
<tr>
<td>70MPa</td>
<td>0.54</td>
<td>0.43</td>
<td>1327.7</td>
</tr>
</tbody>
</table>

When the pressure is 100MPa, the maximum stress of base is 610MPa, which is much smaller than the yield stress, indicating that the base pressure maintaining capacity is greater than 100MPa.

After material optimization, pressure maintaining capacity of pressure controller with spherical contact surface increased to nearly 70MPa.

Conclusions

The pressure controller is the indispensable component of the in-situ fidelity coring system. Based on the self-designed pressure controller, the pressure maintaining capacity is analyzed and optimized by numerical simulation.

1) The square cover produces large deformation and significant stress concentration on the surface when self-designed pressure controller bears the pressure, which exceeds the yield stress. In such circumstances, the pressure controller has low pressure maintaining capacity.

2) When the apex angle of the conical contact surface of the pressure controller improved to 25, 35, 40, and 45 degrees, the situation of deformation and stress concentration was improved. 40 degrees of apex angle reinforced the pressure maintaining capacity to about 30MPa.

3) The contact surface was modified to a spherical surface, value of deformation largely reduced, and the stress concentration at the edge of the square cover disappeared. Pressure maintaining capacity was around30MPa.

4) The material was improved to 45CrNiMoVA alloy, and the pressure maintaining capacity of the spherical contact surface pressure controller rose to nearly 70MPa, indicating that the
pressure controller after optimization is suitable for deep earth where osmotic pressure is nearly 70MPa.

Acknowledgements

This work was financially supported by the State Key Research Development Program of China (Grant No. 2016YFC0600701), National Natural Science Foundation of China (Grant No.51822403, Grant No. 51674170).

References

Paper submitted: June 12, 2018
Paper revised: July 11, 2018
Paper accepted: December 18, 2018