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In this paper, we consider a general fractional-order derivataive of the Liou-
ville-Caputo type with the non-singular kernel of the Rabotnov fractional-expo-
nential function for the first time. A new general fractional-order derivataive heat
transfer model is discussed in detail. The general fractional-order derivataive for-
mula is a new mathematical tool proposed to model the anomalous behaviors in
complex and power-law phenomena.
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Introduction

The general fractional-order derivatives, where the non-singular kernels are the spe-
cial functions, for more details see [1-3], such as exponential, Mittag-Leffler-Gauss, Kohlraus-
ch-Williams-Watts, Miller-Ross, Lorenzo-Hartley, Gorenflo-Mainardi, Bessel, Mittag-Leffler,
Wiman, and Prabhakar, have been applied to investigate the mathematical models in mathemat-
ical physics. The general fractional-order diffusion was reported [4]. The general-order chemi-
cal kinetics via Mittag-Leffler kernel was proposed [5]. The general fractional-order relaxation
via exponential kernal was discussed [6]. The general fractional-order rheologitcal model via
Prabhakar kernel was considered [7]. The general fractional-order Burgers via Mittag-Leffler
was investigated [8]. For more models via the special functions, we refer to the results for the
relaxation and rheological arsising in complex and power-law phenomena [1].

The Rabotnov fractional-exponential function, proposed in 1954 by Rabotnov [9],
was used to describe the viscoelasticity [10, 11]. However, up to now, the general fractional-or-
der derivative with the non-singular kernel of the Rabotnov fractional-exponential function [11]
has not been developed. Motivated by the new idea, the main target of the paper is to propose
the general fractional-order derivative with the non-singular kernel of the Rabotnov fraction-
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al-exponential function in the sense of Liouville-Caputo type and to investigate the general
fractional-order derivataive heat transfer model.

A new general fractional-order derivataive
of the Liouville-Caputo type with the
non-singular kernel of the Rabotnov
fractional-exponential function
Let C, R, Ry, N, and N, be the sets of complex numbers, real numbers, non-negative
real numbers, positive integers and N, = {0} U N, respectively.

The Rabotnov fractional-exponential function

Letz € R, o € R|, 1 € Ry, and x € N,. The Rabotnov fractional-exponential function

is defined as [1, 9]:
ZKT(KH)((ZH)%

@ (“a)zgr[(ml)(au)] M

and its Laplace transform is [1]:

a\| _ 1 1 —(a+1)
Lo, (1)} = G (1)) ®
where the Laplace transform of the function ¢(z) is given as [1-3]:
]L[qﬁ(z‘)} :=¢(s)=_[e’”¢(r)dr (3)
0

with s € C.

A new general fractional-order derivataive with
Rabotnov fractional-exponential kernel

Let L(a, b) be the set of those Lebesgue measurable functions on a finite interval
(a, b)(—o < a < b < +w), for more details, see [1].

Let AC(a, b) be the space of the functions which are absolutely continuous on a finite
interval (a, b)(—oo < a < b < +w), for more details, see [1].

Let AC'(a, b) be the Kolmogorov-Fomin condition, for more details, see [1].

Let 4 € R,,. The general fractional-order integral operator via Rabotnov fractional-ex-
ponential kernel is defined:

(,190)(c)=[ @, [-2(z-1)" |O (1)t (4)

which leads

T

(s170)(r)=[ @, [-2(r=1)" |o(r)ar (5)

0

where ¢ =0 and ® € L(a, b)

(1) ()= [ @, [ -2(r=1)" |o(r)ar 6)

—0

where ©® € L(—», b)

“+00

(1) (z)=[ @, [ -(r=1)" |o(r)ar (7)

0

where ® € L(—0, b).
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The left-sided general fractional-order derivataive of the Liouville-Caputo type with
the non-singular kernel of the Rabotnov fractional-exponential function is defined:

(.p%0)(r)=. 00 e) <o, [~2(r=1) Jo" (e ®
which can be written '
(b0 (r)nt0(e)= @, [~A( ) ] () ®

where ©® € AC'(a, b).
The right-sided general fractional-order derivataive of the Liouville-Caputo type with
the non-singular kernel of the Rabotnov fractional-exponential function is defined:

(.pie)(r)= ——jqn [-2(e=7)" 0" (1)ae (10)

which can be written:

(190)(r)=D0(r)=~ [ @, [~A(:=7)" J0" (1)a a1

where ® € AC'(a, b).
The left-sided general fractional-order derivataive of the Liouville-Caputo type with
the non-singular kernel of the Rabotnov fractional-exponential function is defined:

(:m90)(r)= j ®,[-A(r=1)" |0 (1)t (12)

which implies that:

T

(1p%0)(z)=1D\0(c)=[ @, -4 (r~1)" | (1)dr (13)

where ® € AC"(a, b) and n € N. B
The right-sided general fractional-order derivataive of the Liouville-Caputo type with
the non-singular kernel of the Rabotnov fractional-exponential function is defined:

(:pi@)(z)="D}" jcp [ JG(")(t)dt (14)

which implies that:

(1p“e)(r)=1D" jcp [-2(t=7)" [@" (r)ar (15)

where n € N.
The Laplace transforms of (5), (9), and (13) can be given:
(a) 1 1
L[ (oI @)(T)} e —l+ls_(“+l) o(s) (16)
]LI: O]D)(ra)®(r)j| a+1 a+1) |: :| (17)
and

Zs“@“(O)} (18)

with » € N.
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General fractional-order integrals
via special function

The left-sided general fractional-order integral of () is defined:
(199)(7)=[ A, [-2(z=0)" [Q()de=[ (r=e) P B, [-A(z=0)" |@(1)de (19)

where

A ( ) T e E;H n—(a+1) (_ﬂlz-a*'l )
with the Prabhakar function, denoted [1]:

7 ) 1 F( +K) .
2o S a) 1) e

The right-sided general fractional-order integral of () is defined:

(.10)(r)= jA [ JQ(z)dt (20)
For a =0, eq. (19) can be written:
(OH§“>Q)(r)=]Aa [-A(z=1)" |Q(r)ar @1)

where Q € (a, b).
The Laplace transform of eq. (19) can be presented:

L (o19Q)(2) =5 (14 25 )0(s) (22)

A new application in the heat transfer process

In this section, a new general fractional-order derivataive heat transfer model is pre-
sented.
We now consider the new general fractional-order derivataive heat transfer model:

o, DX (x)=x (23)
with the initial value condition:

x)|x:0=X(O) (24)

where o represents the thermal conductivity of the material and y — the heat flux density.
With the use of eq. (17), we have:

1
T X ()= X(0)] = 2 (25)

which implies that:
X(0
X(s)= 1(1 + A5 )5 LX) (26)
c s
Finally, we have the solution of the general fractional-order derivataive heat transfer
model:

X(x)=§ gL L (~ax)+X(0) 27)
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Conclusion

In our work, we have addressed the new general fractional-order derivataive of the Li-
ouville-Caputo type without the singular kernel of the Rabotnov fractional-exponential function
and its Laplace transform. As an potential application, the general fractional-order derivative
heat transfer model and its solution based on the general Prabhakar function have been investi-
gated in detail. The general fractional-order derivataive is accurate and efficient for description
of the general fractional-order dynamics in complex and power-law phenomena.
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Nomenclature
X(x) —temperature distribution, [K] Greek symbols
x  —space co-ordinate, [m] o — fractional order, [-]

L[] - Laplace transform, [] x — thermal conductivity, [Wm™"K]

x — heat flux density, [Wm2]
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