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In this article, studied the properties of the oscillation of fractional 

difference equations, and we obtain some results. The results we obtained 

are an expansion and further development of highly known results.  Then we 

showed them with examples. 
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1. Introduction and Preliminaries 

In the investigations of qualitative properties for differential equations, research on time scales of 

the dynamic equations, oscillation of differential (or difference) equations and fractional differential 

equations have been a very important issue in the science and engineering. We refer to [1-25] and the 

references therein. 

We first investigated following fractional difference equations, 
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We can rewrite equation (1)  as  
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 and i  are the division of two odd 

positive integers.    ,  t a t  and  iq t  are positive coefficient sequences and
  demonstrate  that 

the Riemann-Liouville fractional difference operator of order   where 0 1  . Therefore, in our 

results we use the following conditions: 
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By a solution of equation (2), we mean a real-valued sequence  x t  satisfying equation (2) for 



0t
t . A solution  x t  of equation (2) is called oscillatory if it is neither eventually positive nor 

eventually negative, otherwise it is called non-oscillatory. Equation (2) is called oscillatory if all its 

solutions are oscillaory.  

 

 Definition 1. [26]. We define vth fractional sum f  as 
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where  we define f  for  mod 2s a , 
v f  for    mod 2t a v   and 
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fractional sum 
v f  maps functions defined on a  to functions defined on a v , where 

 ,  1,  2,...t t t t   . 

 

Definition 2. [26] Let  1m m    and 0v  , where m  denotes a positive integer, m     . Set 

v m   . Then we define that  -th fractional difference as 

                                                               .m v m vf t f t f t                                                  (6) 

2. Oscillation Properties of (2) 

In this section, we work the oscillation properties of (2). 

 

Lemma 1. [22]. Suppose that  x t  be a solution of  equation (2) and let  

                                                                   
 

 
0

1

1
t

s t

G t t s x s



 





                                              (7) 

 then  
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Theorem 1. Assume C1 holds and furthermore, for all suficiently large ,t   
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Then every solution of (2) is either oscillatory or  lim 0t G t  . 

 

Proof. Assume that the contrary that ( )x t  is non-oscillatory solution of (2). Then without loss of 

generality, we may assume that there is a solution  x t  of (2) such that   0x t   on  1,t  , where 1t  

is sufficiently large, so that   0G t   on  1,t  . And all of  iq t 's are not identically zero on 

 1,t   for 1,2,...,i n . From (2), we have  
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 is an eventually non-increasing sequence on  1,t  . So, 

we understand  that      1

t x t


   and  x t  are ultimately of one sign. For 2 1t t  is big 

enough,      1

t x t


   and  x t  have a fixed sign on  2 ,t  . We then consider the 

following conditions: 
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Then, by C1, we obtain  limt G t    which contradicts with  0 G t . 

For the Case 2, we have from (9), 
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Then, by C1, we obtain      1

limt t x t


     which contradicts with  0 x t  . 

For the Case 3, we have   1lim 0t G t k    and      1

2lim 0t t x t k
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suppose that  1 0k  , then   1G t k  for 3 2t t t  . Therefore,  If we sum both sides of (2) from t  to 

 , we  obtain  
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that is 
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If we sum both sides of the (12) from t  to  , we have 
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If we sum both sides of  the (13) from 
3t  to 1t  , we obtain 
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Therefore, by (9), we obtain  limt G t    with contradicts with   0G t  . 

For the Case 4, we have  
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Then from (2), 
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If we sum both sides of  the (14) from 3t  to 1t  , we obtain 
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If we take t  , we get a contradiction with  equation (10).  Therefore, the proof  of the Theorem 1 

is complete 

Theorem 2. Suppose that C2, (9) and (10) hold. Furthermore, for all sufficiently large t ,  
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Therefore,  each solution of (2) is either  lim 0t G t   or oscillatory. 

 

Proof. Let's  the contrary that ( )x t  is non-oscillatory solution of (2). Then without loss of generality, 



we assume that there is a solution  x t  of (2) such that  0 x t  on  1,t  , where 1t  is sufficiently 

large, so that   0G t   on  1,t  .   It appears that all of  iq t 's are not identically zero on  1,t   

for 1,2,...,i n . From (11), we obtained that        
2

1

a t t x t


  
  

 is an eventually non-

increasing sequence on  1,t  . For the Case 1, we have  

 

 
                 

           

1 1
1 1

1 1

1
1

1 1

1/ 1/1 1
1/ 1/

1/ 1 1
1/ 1/

1 1 1

1

.

s t s t

s t s t

G t
s x s s t x t s

t x t s K s

    

  

   


  

 
 

 

 
 

 

 
     
   

  

 

 

 

Then from the last inequality and (2), we obtain 
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If we sum both sides of  the (17) from 2t  to 1t  , 
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that is 
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If we sum both sides of the (18) from 3t  to 1t  , 
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then we get 
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If we sum both sides of  the  the (19) from 4t  to 1t  , we have 
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By (14), we obtain  limt G t    due to 1 0K  , which conradicts with  0 G t . 

For the Case 2,  
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Thereore, we have 
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Thus, from (2), we  obtain 
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If we sum two sides of  the (20) from  3t   to  1t   , we have 
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letting t  , we obtain  
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which contradicts with (16).  The rest of the proof is made similar to the proof of the Theorem 1. Thus 

the proof of the theorem is completed. 

 

3. Application 

 Let's consider the following fractional difference equation as an example 
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Then C1 holds. So, we have  
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Therefore, (9) and (10) holds, and then we say that  (21) is  lim 0t G t   or oscillatory  by 

Theorem 1. 

 

Counclusion 

In this work, we studied the qualitative behavior of solutions of nonlinear fractional difference 

equations (FDE) with fractional Riemann–Liouville difference operator. Because there was a gap for 

the oscillatory solutions of FDE under the condition (C2) in the literature, we considered the equation 

with the conditions (C1) and (C2). By using some techniques, we obtained some oscillation results. 

The obtained results improved the many criteria in the literatüre. 
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