We introduce double λ-statistically convergent sequences and double λ-statistically Cauchy sequences in the fuzzy normed spaces. We study $[V,\bar{\lambda}]$ and $[C,1]$-summabilities for double sequences. In addition, we obtain the relation between these concepts and $\bar{\lambda}$-statistically convergence.

Key words: $\bar{\lambda}$-convergence; double sequence; summabilities

1. Introduction

Theory of statistical convergence was firstly originated by Fast [1]. After Fridy [2] and Šalát [3], statistical convergence became a notable topic in summability theory.

Fuzzy set theory has become an important working area for 40 years. It has been used in many engineering applications, control of chaos, non-linear operator, population changes. It affected many mathematicians to investigate new kinds of sequence spaces and to study this type convergence. Fuzzy norm idea was firstly considered by Katsaras [4] in the fuzzy topological vector spaces. Also Alimohammady and Roohi [5] introduced compactness in fuzzy minimal spaces. Felbin [6] was inspired by Kaleva and Seikkala [7], and then he introduced fuzzy norm of the linear space. Topological characterizations of fuzzy normed linear spaces were found in [8,9]. Other studies on the same spaces can also be found in [10,11].

The convergence of a sequence using fuzzy numbers was given by Matloka [12]. Nanda [13] studied the sequences with fuzzy numbers. He also formed complete metric space using set of all convergent sequences with fuzzy numbers. Mursaleen and Edely [14] introduced statistical convergence via double sequences and identified some results about statistical convergence. Çakan and Altay [15], Altay and Başar [16], Tripathy [17] studied double sequences in summability theory. Statistical convergence using fuzzy numbers was given by Nuray and Savaş [18]. Savaş and Mursaleen [19] studied statistical convergent double sequences via fuzzy numbers. Şençimen and Pehlivan [20] introduced statistically convergent (resp. statistically Cauchy) sequence in the fuzzy normed linear space. Considering [20], Mohiuddine et al. [21] studied double sequences in the same spaces.

Mursaleen [22] introduced the idea of λ-statistical convergence. Using fuzzy numbers, λ-statistical convergence was presented Savaş [23]. λ-statistical convergence by using double sequences was obtained by Savaş [24], and Savaş and Patterson [25,26]. Türkmen and Çınar [27] considered λ-statistical convergence within fuzzy normed linear space.
Main results

We define double $\bar{\lambda}$-statistically convergence sequence, double $\bar{\lambda}$-statistically Cauchy sequence, $[V, \bar{\lambda}]$ and $[C.1]$-summabilities for double sequences in the fuzzy normed spaces. Also, we give notable properties and relationships between these concepts.

Throughout the paper, we consider $(X, \| \|)$ be and FNS and $\bar{\lambda}_{r,s} = \lambda_r \mu_s$ be the collection of such sequences $\bar{\lambda}$ will be represented by A_2.

Let $\lambda = (\lambda_r)$ and $\mu = (\mu_s)$ be non-decreasing sequences of \mathbb{R}^+, each converges to ∞ and such that $\lambda_{r+1} \leq \lambda_r + 1, \lambda_1 = 1; \mu_{s+1} \leq \mu_s + 1, \mu_1 = 1$. Let $I_r = [r - \lambda_r + 1, r]$, $I_s = [s - \mu_s + 1, s]$ and $I_{r,s} = I_r \times I_s$.

For any set $X \subset \mathbb{N} \times \mathbb{N}$, following number

$$\delta_{\bar{\lambda}}(X) = \left| P - \lim_{r,s \to \infty} \frac{1}{I_{r,s}} \left| \{(k, l) \in I_{r,s}: (k, l) \in X \} \right| \right|$$

is called $\bar{\lambda}$-density of X, where the limit exists and then $\bar{\lambda}_{r,s} = \lambda_r \mu_s$.

Next, we give double $\bar{\lambda}$-statistically convergence in fuzzy normed space.

Definition 1. $x = (x_{k,l})$ in X is called double $\bar{\lambda}$-statistically convergent to $L \in X$ with regards to fuzzy norm on X or $FS_{\bar{\lambda}}$-convergent if for each $\varepsilon > 0$

$$\lim_{r,s \to \infty} \frac{1}{I_{r,s}} \left| \left\{ (k, l) \in I_{r,s} : \| x_{k,l} - L \|_0^+ \geq \varepsilon \right\} \right| = 0.$$

It is demonstrated by $x_{k,l} \xrightarrow{FS_{\bar{\lambda}}} L$ or $x_{k,l} \xrightarrow{L} (FS_{\bar{\lambda}})$ or $FS_{\bar{\lambda}} - \lim_{k,l \to \infty} x_{k,l} = L$ where $I_r = [r - \lambda_r + 1, r]$, $I_s = [s - \mu_s + 1, s]$ and $I_{r,s} = I_r \times I_s$.

For each $\varepsilon > 0$,

$$K(\varepsilon) = \left\{ (k, l) \in I_{r,s} : \| x_{k,l} - L \|_0^+ \geq \varepsilon \right\}$$

has natural zero density. That is, $\| x_{k,l} - L \|_0^+ < \varepsilon$ for almost all k, l. It is denoted by

$$FS_{\bar{\lambda}} - \lim_{k,l \to \infty} x_{k,l} = L.$$

In X, all $\bar{\lambda}$-statistically convergent sequences is described by $FS_{\bar{\lambda}}(X)$, and also defined by as follows:

$$FS_{\bar{\lambda}}(X) = \left\{ x = (x_{k,l}) : \text{for some} \ L, FS_{\bar{\lambda}} - \lim_{k,l \to \infty} x_{k,l} = L \right\}.$$

$L \in X$ is $FS_{\bar{\lambda}}$-limit of a $(x_{k,l})$.

In terms of neighborhoods, we have $x_{k,l} \xrightarrow{FS_{\bar{\lambda}}} L$ if for each $\varepsilon > 0$,

$$\delta_{\bar{\lambda}}(\{(k, l) \in I_{r,s} : x_{k,l} \notin N_L(\varepsilon, 0)\}) = 0,$$

that is, for each $\varepsilon > 0, x_{k,l} \notin N_L(\varepsilon, 0)$ for almost all (k, l).

A useful result of the above definition is:

$$x_{k,l} \xrightarrow{FS_{\bar{\lambda}}} L \text{ iff } FS_{\bar{\lambda}} - \lim_{k,l \to \infty} \| x_{k,l} - L \|_0^+ = 0.$$

Note that $FS_{\bar{\lambda}} - \lim_{k,l \to \infty} \| x_{k,l} - L \|_0^+ = 0$ implies that

$$FS_{\bar{\lambda}} - \lim_{k,l \to \infty} \| x_{k,l} - L \|_\alpha = FS_{\bar{\lambda}} - \lim_{k,l \to \infty} \| x_{k,l} - L \|_\alpha^+ = 0,$$
for each $\alpha \in [0,1]$ since

$$0 \leq \|x_{k,l} - L\|_\alpha \leq \|x_{k,l} - L\|_\alpha^+ \leq \|x_{k,l} - L\|_0^+$$

holds for every $(k, l) \in I_{r,s}$ and for each $\alpha \in [0,1]$.

For all r,s, if $\overline{\lambda}_{r,s} = r,s$, set of $\overline{\lambda}$-statistically convergent obtained by double sequences transforms to set of statistically convergent via double sequences in X.

Definition 2. $x = (x_{k,l})$ in X is called strongly double $\overline{\lambda}$-summable with regards to fuzzy norm on X if there is a $L \in X$ such that

$$\lim_{r,s \to \infty} \frac{1}{r,s} \sum_{k,l \in I_{r,s}} (D\|x_{k,l} - L\|, 0) = 0.$$

It is denoted by $x_{k,l} \xrightarrow{[V, \overline{\lambda}]_{FN}} L$ or $x_{k,l} \to L \left([V, \overline{\lambda}]_{FN} \right)$ or $[V, \overline{\lambda}]_{FN} - \lim_{k,l \to \infty} x_{k,l} = L$.

If $\overline{\lambda}_{r,s} = r,s$, strongly double $\overline{\lambda}$-summable tranforms to $[C, 1]_{FN}$, the space of strongly Cesàro summable with double sequences in fuzzy normed space. It is defined by as follows:

$$\lim_{r,s \to \infty} \sum_{k,l = 1,1}^{r,s} (D\|x_{k,l} - L\|, 0) = 0.$$

So, we have written

$$[V, \overline{\lambda}]_{FN}(X) = \left\{ x = (x_{k,l}) : \lim_{r,s \to \infty} \frac{1}{r,s} \sum_{k,l \in I_{r,s}} (D\|x_{k,l} - L\|, 0) = 0, \text{ for some } L \right\}$$

$$[C, 1]_{FN}(X) = \left\{ x = (x_{k,l}) : \lim_{r,s \to \infty} \frac{1}{r,s} \sum_{k,l \in I_{r,s}}^{r,s} (D\|x_{k,l} - L\|, 0) = 0, \text{ for some } L \right\}$$

Definition 3. $x = (x_{k,l})$ in X is called $FS_{\overline{\lambda}}$-convergent to $L \in X$ with regards to fuzzy norm on X if for each $\varepsilon > 0$ and $t \in (0,1)$,

$$\delta_{\overline{\lambda}} = \left\{ \{(k,l) \in I_{r,s} : D(\|x_{k,l} - L\|, 0) \leq 1 - t) \right\} = 0$$

or equivalently

$$\delta_{\overline{\lambda}} = \left\{ \{(k,l) \in I_{r,s} : D(\|x_{k,l} - L\|, 0) > 1 - t) \right\} = 1$$

Theorem 1. If $FS_{\overline{\lambda}} \sim x_{k,l} = L$ exists, it is unique.

Proof. Let $L_1, L_2 (L_1 \neq L_2)$ be in X such that

$$FS_{\overline{\lambda}} \sim x_{k,l} = L_1; FS_{\overline{\lambda}} \sim x_{k,l} = L_2.$$

If $L_1 \neq L_2$, then $L_1 - L_2 \neq 0$. Therefore, $\|L_1 - L_2\|_0^+ = 2\varepsilon > 0$, and we take a norm as $\|\|_0^+$.

Since $FS_{\overline{\lambda}} \sim x_{k,l} = L_1$ and $FS_{\overline{\lambda}} \sim x_{k,l} = L_2$ it follows that

$$\lim_{r,s \to \infty} \frac{1}{r,s} \left\{ \{(k,l) \in I_{r,s} : \|x_{k,l} - L_1\|_0^+ \geq \varepsilon) \right\} = 0$$

3
There are \((k, l) \in I_{r,s}\) such that
\[
\|x_{k,l} - L_1\|_0^+ + \|x_{k,l} - L_2\|_0^+ \leq 2\varepsilon
\]
which is a contradiction. Therefore, the limit unique.

Theorem 2. Let \((X, \|\cdot\|)\) be an FNS, \(\bar{\lambda} \in \Delta_2\). Then

(i) If \(x_{k,l} \to L\left([V, \bar{\lambda}]_{FN}\right)\), then \(x_{k,l} \to L(\text{FS}_X)\) with regards to fuzzy norm on \(X\).

(ii) \([V, \bar{\lambda}]_{FN}(X)\) is proper subset of \(\text{FS}_X(X)\).

Proof. (i) Let \(\varepsilon > 0\) and \(x_{k,l} \to L\left([V, \bar{\lambda}]_{FN}\right)\), we can write

\[
\sum_{k,l \in I_{r,s}} \left(D\|x_{k,l} - L\|_0^+, \overline{0}\right)
\]

\[
\geq \sum_{k,l \in I_{r,s}} \left(D\|x_{k,l} - L\|_0^+, \overline{0}\right) \\
\text{subject to: } \left(D\|x_{k,l} - L\|_0^+, \overline{0}\right) \geq \varepsilon
\]

\[
\geq \varepsilon \cdot \left\{(k, l) \in I_{r,s} : \left(D\|x_{k,l} - L\|_0^+, \overline{0}\right) \geq \varepsilon \right\}
\]

and so

\[
\frac{1}{\varepsilon \overline{\lambda}_{r,s}} \sum_{k,l \in I_{r,s}} \left(D\|x_{k,l} - L\|_0^+, \overline{0}\right)
\]

\[
\geq \frac{1}{\overline{\lambda}_{r,s}} \left\{(k, l) \in I_{r,s} : \left(D\|x_{k,l} - L\|_0^+, \overline{0}\right) \geq \varepsilon \right\}.
\]

This implies that if \(x_{k,l} \to L\left([V, \bar{\lambda}]_{FN}\right)\), then \(x_{k,l} \to L(\text{FS}_X)\) in fuzzy normed space. This completes the proof.

(ii) To show the inclusion \([V, \bar{\lambda}]_{FN}(X) \subset \text{FS}_X(X)\) is a proper, we define \(x = (x_{k,l})\) by
\[x_{k,l} = \begin{cases}
(k,l), & \text{if } k_{r-1} \leq k < k_{r-1} + \sqrt{\lambda_r}, l_{s-1} \leq l < l_{s-1} + \sqrt{\mu_s}, \\
(0,0), & \text{otherwise.}
\end{cases}
(r,s = 1,2,\ldots) \]

We see that \(x \) is not bounded. For every \(\varepsilon > 0 \), \(x \in X \), we obtain
\[
\frac{1}{x_{r,s}} \left[\{ (k,l) \in I_{r,s} : D(\|x_{k,l} - L\|, \bar{0}) \geq \varepsilon \} \right] \leq \frac{\sqrt{\lambda_r} \sqrt{\mu_s}}{x_{r,s}} \to 0, \ (r,s \to \infty).
\]
That is, \(x_{k,l} \to 0 \). On the other side,
\[
\frac{1}{x_{r,s}} \sum_{k,l \in I_{r,s}} (D\|x_{k,l} - 0\|, \bar{0})
= \frac{1}{x_{r,s}} \sum_{k,l \in I_{r,s}} \|x_{k,l}\|^+_0
= \frac{1}{x_{r,s}} \cdot \frac{\lfloor \sqrt{\lambda_r} \cdot \lfloor \sqrt{\mu_s} + 1 \rfloor \cdot \lfloor \sqrt{\lambda_r} \rfloor \cdot \lfloor \sqrt{\mu_s} + 1 \rfloor}{4} \to \frac{1}{4} \neq 0.
\]

Hence, \(x_{k,l} \to 0 \left([V, \bar{\lambda}]_{FN} \right) \).

Theorem 3. Let a bounded \((x_{k,l}) \) is double \(\bar{\lambda} \)-statistically convergent to \(L \). Hence, it is strongly double \(\bar{\lambda} \)-summable to \(L \). Therefore, \((x_{k,l}) \) is double Cesàro summable to \(L \) with regards to fuzzy norm on \(X \).

Proof. Assume that \((x_{k,l}) \) is bounded and \(x_{k,l} \to L \left(FS_{\bar{\lambda}} \right) \). Since \((x_{k,l}) \) is bounded, we get \(D(\|x_{k,l} - L\|, \bar{0}) \leq M \) for all \(k,l \). For \(\varepsilon > 0 \) and for large \(r,s \) we get
\[
\frac{1}{x_{r,s}} \sum_{k,l \in I_{r,s}} (D\|x_{k,l} - L\|, \bar{0})
= \frac{1}{x_{r,s}} \sum_{k,l \in I_{r,s}} (D\|x_{k,l} - L\|, \bar{0}) + \frac{1}{x_{r,s}} \sum_{k,l \in I_{r,s}} (D\|x_{k,l} - L\|, \bar{0})
\leq \frac{M}{x_{r,s}} \left\{ (k,l) \in I_{r,s} : D(\|x_{k,l} - L\|, \bar{0}) \geq \frac{\varepsilon}{2} \right\} + \frac{\varepsilon}{2}.
\]

This implies that \(x_{k,l} \to L \left([V, \bar{\lambda}]_{FN} \right) \).
Further, we have
\[
\frac{1}{rs} \sum_{k,l \in I_{r,s}} (D\|x_{k,l} - L\|, \bar{0}) = \frac{1}{rs} \sum_{k,l \in I_{r,s}} (D\|x_{k,l} - L\|, \bar{0}) + \frac{1}{rs} \sum_{k,l \in I_{r,s}} (D\|x_{k,l} - L\|, \bar{0})
\]
\[
\leq \frac{1}{rs} \sum_{k,l \in I_{r,s}} (D\|x_{k,l} - L\|, \bar{0}) + \frac{1}{rs} \sum_{k,l \in I_{r,s}} (D\|x_{k,l} - L\|, \bar{0})
\]
\[
\leq \frac{2}{rs} \sum_{k,l \in I_{r,s}} (D\|x_{k,l} - L\|, \bar{0}).
\]

Hence, \((x_{k,l})\) is double Cesàro summable to \(L\) since \((x_{k,l})\) strongly double \(\lambda\)-summable to \(L\) in fuzzy normed space.

Theorem 4. Let \((x_{k,l})\) be double statistically convergent to \(L\) in fuzzy normed space. Then, it is double \(\lambda\)-statistically convergent to \(L\) with regards to the fuzzy norm on \(X\) iff
\[
P - \lim_{r,s \to \infty} \inf \frac{f_{rs}}{rs} > 0. \tag{1}
\]

Proof. For \(c > 0\), we obtain
\[
\left\{(k,l), k \leq r, l \leq s : (D\|x_{k,l} - L\|, \bar{0}) \geq \varepsilon\right\}
\]
\[
\subseteq \left\{(k,l) \in I_{r,s} : D\left(\|x_{k,l} - L\|, \bar{0}\right) \geq \varepsilon\right\}.
\]

Therefore,
\[
\frac{1}{rs} \left\|(k,l), k \leq r, l \leq s : (D\|x_{k,l} - L\|, \bar{0}) \geq \varepsilon\right\|
\]
\[
\geq \frac{1}{rs} \left\|(k,l) \in I_{r,s} : D\left(\|x_{k,l} - L\|, \bar{0}\right) \geq \varepsilon\right\|
\]
\[
\geq \frac{\lambda_{rs}}{rs} \frac{1}{\lambda_{rs}} \left\|(k,l) \in I_{r,s} : (D\|x_{k,l} - L\|, \bar{0}) \geq \varepsilon\right\|.
\]

Using limit as \(r, s \to \infty\), we get \(x_{k,l} \xrightarrow{FS_s^2} L\). That is, \(x_{k,l} \xrightarrow{st_2(FN)} L \Rightarrow x_{k,l} \xrightarrow{FS_s^2} L\).

Conversely, assume that \(x \in st_2(FN)(X)\) and since \(\lambda_{r,s} = \lambda_r \mu_s\) either \(P - \lim_{r \to \infty} \frac{\lambda_r}{r} = 0\) or \(P - \lim_{s \to \infty} \frac{\lambda_s}{s} = 0\) or both of them are zero. Hence, choosing subsequences \(\left(r(p)\right)_{p=1}^{\infty}\) and \(\left(s(q)\right)_{q=1}^{\infty}\) such that \(\frac{\lambda_{r(p)}}{r(p)} < \frac{1}{p}\) and \(\frac{\lambda_{s(q)}}{s(q)} < \frac{1}{q}\) we can describe a double sequence \(x = (x_{k,l})\) by

6
\[(x_{kl}) = \begin{cases} 1, & \text{if } k \in I_{r(p)}, l \in I_{s(q)}, (p, q = 1, 2, \ldots), \\ 0, & \text{otherwise}. \end{cases} \]

Therefore, \((x_{kl}) \in [C, 1]_{F^*N}\) and \((x_{kl}) \in st_2(FN)(X)\). On the other hand, \(x \notin [V, \vec{\lambda}]_{F^*N}(X)\).

Theorem 3 implies that \(x \notin FS_X(X)\); a contradiction and hence (1) must hold.

Theorem 5. Let \((X, \|\|)\) be an FNS and if \(\vec{\lambda} \in \Delta_2\) such that \(\lim_{r \to \infty} \frac{r_{rs}}{rs} = 1\). Then \(FS_X(X) \subset st_2(FN)(X)\).

Proof. Since \(\lim_{r \to \infty} \frac{r_{rs}}{rs} = 1\), we see following,

\[
\frac{1}{rs} \left\{ (k, l), k \leq r, l \leq s : (D\|x_{kl} - L\|, \tilde{0}) \geq \varepsilon \right\} \leq \frac{1}{rs} \left\{ (k, l), k \leq r - \lambda, l \leq s - \mu_s : (D\|x_{kl} - L\|, \tilde{0}) \geq \varepsilon \right\} + \frac{1}{rs} \left\{ (k, l) \in I_{r,s} : (D\|x_{kl} - L\|, \tilde{0}) \geq \varepsilon \right\}
\]

\[
\leq \frac{r_{rs}}{rs} \lambda_{rs} + \frac{1}{rs} \left\{ (k, l) \in I_{r,s} : (D\|x_{kl} - L\|, \tilde{0}) \geq \varepsilon \right\}
\]

\[
= \frac{r_{rs}}{rs} \lambda_{rs} + \frac{1}{\lambda_{rs}} \left\{ (k, l) \in I_{r,s} : (D\|x_{kl} - L\|, \tilde{0}) \geq \varepsilon \right\}
\]

for \(\varepsilon > 0\). This implies that \(x_{kl} \xrightarrow{st_2(FN)} L\), if \(x_{kl} \xrightarrow{FS_X} L\). Hence, \(FS_X(X) \subset st_2(FN)(X)\).

Remark 1. We could not show whether the condition \(\lim_{r \to \infty} \frac{r_{rs}}{rs} = 1\) in the above theorem is necessary. We left it as an open problem.

Theorem 6. \(FS_X - \lim_{k_{r,l} \to \infty} x_{kl} = L\) iff there is a subset \(K = \{(k_n, l_n) : k_1 < k_2 < \cdots ; l_1 < l_2 < \cdots \} \subseteq \mathbb{N} \times \mathbb{N}\) such that \(\delta_X(K) = 1\) and \(st_2(FN) - \lim_{r,s \to \infty} x_{kl,rs} = L\).

Proof. Assume that \(FS_X - \lim_{k_{r,l} \to \infty} x_{kl} = L\). Hence, for any \(\varepsilon > 0\) and \(s \in \mathbb{N}\), let

\[
K(s, \varepsilon) = \{(k, l) \in I_{r,s} : D(\|x_{kl} - L\|, \tilde{0}) \leq 1 - \frac{1}{s}\},
\]

\[
M(s, \varepsilon) = \{(k, l) \in I_{r,s} : D(\|x_{kl} - L\|, \tilde{0}) > 1 - \frac{1}{s}\}.
\]

Then \(\delta_X(K(s, \varepsilon)) = 0\) and

\[
M(1, \varepsilon) \supset M(2, \varepsilon) \supset \cdots \supset M(i, \varepsilon) \supset M(i + 1, \varepsilon) \supset \cdots
\]

and

\[
7
\]
\[\delta_T(M(s, \varepsilon)) = 1, \quad s = 1, 2, \ldots \]

Now we have to show for \((k, l) \in M(s, \varepsilon), x = (x_{k,l})\) is \(st_2(FN)\)-convergent to \(L\). Let \(x = (x_{k,l})\) is not \(st_2(FN)\)-convergent to \(L\) for some \((k, l) \in M(s, \varepsilon)\). Therefore, there is \(t > 0\) and are positive integers \(l_0, k_0\) such that \(D(\|x_{k,l} - L\|, 0) \leq 1 - t\) for all \(l \geq l_0, k \geq k_0\). And let \(\|x_{k,l} - L\|, 0) > 1 - t\) for all \(l \leq l_0, k \leq k_0\); hence,

\[\delta_T \left(\left\{(k, l) \in I_{r,s} : D(\|x_{k,l} - L\|, 0) > 1 - t \right\} \right) = 0. \]

Since \(t > \frac{1}{s}\) we obtain

\[\delta_T(M(s, \varepsilon)) = 0 \]

which contradicts (2). Finally, \(x = (x_{k,l})\) is double statistical convergent to \(L\).

Conversely, suppose that there is a subset \(K = \{(k_n, l_n) : k_1 < k_2 < \cdots ; l_1 < l_2 < \cdots \} \subseteq \mathbb{N} \times \mathbb{N}\) such that \(\delta_T(K) = 1\) and \(st_2(FN) - \lim_{r<s, \rightarrow \infty} x_{k,r,l_s} = L\). There exists \(N \in \mathbb{N}\) for every \(t \in (0, 1)\) and \(\varepsilon > 0\),

\[\left(D(\|x_{k,l} - L\|, 0) > 1 - t, \text{ for all } k, l \geq N. \right. \]

Next,

\[M(t, \varepsilon) = \left\{(k, l) \in I_{r,s} : \left(D(\|x_{k,l} - L\|, 0) \right) \leq 1 - t \right\} \subseteq \mathbb{N} \times \mathbb{N} - \{(k_{N+1}, L_{N+1}), (k_{N+2}, L_{N+2}), \ldots \}. \]

Therefore, \(\delta_T(M(s, \varepsilon)) \leq 1 - 1 = 0\). Hence, we have \(FS_T = \lim_{k,l \rightarrow \infty} x_{k,l} = L\).

Definition 4. Let \((X, \|\cdot\|)\) be an FNS, \(\bar{\lambda} \in \Delta_2\). The double sequence \(x = (x_{k,l})\) is called \(\bar{\lambda}\)-statistically Cauchy sequence with regards to fuzzy norm on \(X\) if there is a double subsequence \(x = \{x_{k_r,l_s}\}\) of \(x\) such that \((\bar{k}_r, \bar{l}_s) \in I_{r,s}\) for each \((r, s)\), \(FS_X = \lim_{r<s, \rightarrow \infty} x_{k_r,l_s} = L\) and for every \(\varepsilon > 0\)

\[\lim_{r<s, \rightarrow \infty} \frac{1}{\bar{k}_r, \bar{l}_s} \left| \left\{(k, l) \in I_{r,s} : \left(D(\|x_{k,l} - x_{k_r,l_s}\|, 0) \right) > \varepsilon \right\} \right| = 0. \]

Theorem 7. The double sequence \(x = (x_{k,l})\) in \(X\) is \(\bar{\lambda}\)-statistically convergent with regards to fuzzy norm on \(X\) iff \(x = (x_{k,l})\) is \(\bar{\lambda}\)-statistically Cauchy sequence.

Proof. Let \(FS_X = \lim_{k,l \rightarrow \infty} x_{k,l} = L\) and

\[K^{r,v} = \left\{(k, l) \in I_{r,s} : \left(D(\|x_{k,l} - L\|, 0) \right) < \frac{1}{r} \right\}, \]

We obtain the following

\[K^{r+1,v+1} \subseteq K^{r,v} \quad \text{and} \quad \frac{\|K^{r+1,v+1} \cap I_{r,s}\|}{\bar{k}_r, \bar{l}_s} \rightarrow 1, \text{as } r, s \rightarrow \infty. \]

This implies that there is \(k_1\) and \(l_1\) such that \(r \geq k_1\) and \(s \geq l_1\) and \(\|K^{r+1,v+1} \cap I_{r,s}\| > 0\), that is, \(K^{1,1} \cap I_{r,s} \neq \emptyset\). We next choose \(k_2 \geq k_1\) and \(l_2 \geq l_1\) such that \(r \geq k_2\) and \(s \geq l_2\) implies that \(K^{2,2} \cap I_{r,s} \neq \emptyset\). Thus, for each pair \((r, s)\) such that \(k_1 \leq r < k_2\) and \(l_1 \leq s < l_2\). We select \((\bar{k}_r, \bar{l}_s) \in I_{r,s}\) such that \((\bar{k}_r, \bar{l}_s) \in K^{r,s} \cap I_{r,s}\) that is
(D \left(\|x_{k,l} - L\|, \hat{0} \right) < 1.

In general, we choose \(k_{t+1} \geq k_t \) and \(l_{v+1} \geq l_v \) such that \(r > k_{t+1} \) and \(s > l_{v+1} \). This implies \(K^{t+1,v+1} \cap I_{r,s} \neq \emptyset \). Thus, for all \((r,s)\) such that for \(k_t \leq r < k_{t+1} \) and \(l_v \leq s < l_{v+1} \) choose \((k_r, l_s) \in I_{r,s}\), that is,

\[
\left(D \left(\|x_{k,l} - L\|, \hat{0} \right) < 1 \right)
\]

Thus, \((k_r, l_s) \in I_{r,s}\) for each pair \((r,s)\) and

\[
\left(D \left(\|x_{k,l} - L\|, \hat{0} \right) < 1 \right)
\]

implies \(FS_X - \lim_{r,s \to \infty} x_{k_r,l_s} = L \). Also, for each \(\varepsilon > 0 \)

\[
\frac{1}{x_{r,s}} \left| \left\{ (k,l) \in I_{r,s} : D \left(\|x_{k,l} - x_{k_r,l_s}\|, \hat{0} \right) \geq \varepsilon \right\} \right|
\]

\[
\leq \frac{1}{x_{r,s}} \left| \left\{ (k,l) \in I_{r,s} : D \left(\|x_{k,l} - L\|, \hat{0} \right) \geq \varepsilon \right\} \right|
\]

\[
+ \frac{1}{x_{r,s}} \left| \left\{ (k,l) \in I_{r,s} : D \left(\|x_{k_r,l_s} - L\|, \hat{0} \right) \geq \varepsilon \right\} \right|
\]

Since \(FS_X - \lim_{k_{t+1} \to \infty} x_{k,t} = L \) and \(FS_X - \lim_{r,s \to \infty} x_{k_r,l_s} = L \), it follows that \(x \) is \(x \)-statistically Cauchy sequence.

Next, we assume \(x \) is an \(x \)-statistically Cauchy sequence. Then

\[
\left| \left\{ (k,l) \in I_{r,s} : D \left(\|x_{k,l} - L\|, \hat{0} \right) \geq \varepsilon \right\} \right|
\]

\[
\leq \left| \left\{ (k,l) \in I_{r,s} : D \left(\|x_{k,l} - x_{k_r,l_s}\|, \hat{0} \right) \geq \varepsilon \right\} \right|
\]

\[
+ \left| \left\{ (k,l) \in I_{r,s} : D \left(\|x_{k_r,l_s} - L\|, \hat{0} \right) \geq \varepsilon \right\} \right|
\]

Therefore, \(FS_X - \lim_{k_{t+1} \to \infty} x_{k,t} = L \). Thus, the theorem is proved.

Theorem 8. \(FS_{\bar{x}}(X) \cap l_\infty^x (X) \) is a closed subset of \(l_2^x (X) \), if \(X \) is a fuzzy normed Banach space.

Proof. Let \(\left\{ x^n_n \right\}_{n \in \mathbb{N}} = \left(x^n_{k,l} \right)_{k,l \in \mathbb{N}} \) be a convergent sequence in \(FS_{\bar{x}}(X) \cap l_\infty^x (X) \) converging to \(x \in l_2^x (X) \). We have to prove that \(x \in FS_{\bar{x}}(X) \cap l_\infty^x (X) \). And let \(\left(x^n_{k,l} \right)_{k,l} \to L, \) for all \(n \in \mathbb{N} \). Taking a positive decreasing convergent sequence \(\left(\varepsilon_n \right)_{n \in \mathbb{N}}, \) where \(\varepsilon_n = \frac{\varepsilon}{2^n}, \) for a given \(\varepsilon > 0, \) we select \(\left(\varepsilon_n \right)_{n \in \mathbb{N}} \) which converges to zero. Choosing \(n \in \mathbb{Z}^+, \) such that \(\|x - x^n\|_\infty < \frac{\varepsilon}{4} \) for all \(n \geq r, s, \) then we get

\[
\left| \left\{ (k,l) \in I_{r,s} : D \left(\|x_{k,l} - L_n\|, \hat{0} \right) \geq \varepsilon_n \right\} \right| = 0
\]
and
\[\lim_{r,s \to \infty} \frac{1}{\lambda_{r,s}} \left\{ (k,l) \in I_{r,s} : D \left(\| x_{k,l}^n - L_n \|, \tilde{0} \right) \geq \frac{\varepsilon_n}{4} \right\} = 0. \]

Since
\[\frac{1}{\lambda_{r,s}} \left\{ (k,l) \in I_{r,s} : D \left(\| x_{k,l}^n - L_n \|, \tilde{0} \right) \geq \frac{\varepsilon_n}{4} \right\} = 0, \]

for all \(k, l \in \mathbb{N} \),
\[\left\{ (k,l) \in I_{r,s} : D \left(\| x_{k,l}^n - L_n \|, \tilde{0} \right) \geq \frac{\varepsilon_n}{4} \right\} \cap \left\{ (k,l) \in I_{r,s} : D \left(\| x_{k,l}^{n+1} - L_{n+1} \|, \tilde{0} \right) \geq \frac{\varepsilon_{n+1}}{4} \right\} \]
is infinite. Hence, there must exist \((k,l) \in I_{r,s}\) for which we have, simultaneously,
\[D \left(\| x_{k,l}^n - L_n \|, \tilde{0} \right) < \frac{\varepsilon_n}{4} \text{ and } D \left(\| x_{k,l}^{n+1} - L_{n+1} \|, \tilde{0} \right) < \frac{\varepsilon_{n+1}}{4}. \]

It follows that
\[D \left(\| L_n - L_{n+1} \|, \tilde{0} \right) \leq D \left(\| L_n - x_{k,l}^n \|, \tilde{0} \right) \]
\[+ D \left(\| x_{k,l}^n - x_{k,l}^{n+1} \|, \tilde{0} \right) + D \left(\| x_{k,l}^{n+1} - L_{n+1} \|, \tilde{0} \right) \]
\[\leq D \left(\| x_{k,l}^n - L_n \|, \tilde{0} \right) + D \left(\| x_{k,l}^{n+1} - L_{n+1} \|, \tilde{0} \right) \]
\[+ D \left(\| x - x^n \|_{\omega}, \tilde{0} \right) + D \left(\| x - x^{n+1} \|_{\omega}, \tilde{0} \right) \]
\[\leq \frac{\varepsilon_n}{4} + \frac{\varepsilon_n}{4} + \frac{\varepsilon_n}{4} + \frac{\varepsilon_n}{4} = \varepsilon_n. \]

It gives \((L_n)\) is a Cauchy sequence. We can write \(L_n \to L \in X \) as \(n \to \infty \), since \(X \) is a fuzzy normed Banach space. We prove that \(x_{k,l} \to L(FS_X) \). For any \(\varepsilon > 0 \), taking \(n \in \mathbb{N} \) such that \(\varepsilon_n < \frac{\varepsilon}{4} \),
\[D \left(\| x_{k,l} - x_{k,l}^n \|_{\omega}, \tilde{0} \right) < \frac{\varepsilon}{4} \text{ and } D \left(\| L_n - L \|, \tilde{0} \right) < \frac{\varepsilon}{4}. \]

Hence, we have
\[
\frac{1}{\lambda r,s} \left| \left\{ (k,l) \in I_{r,s} : D\left(\left\| x_{k,l} - L \right\|_{\infty}, 0 \right) \geq \varepsilon \right\} \right|
\]

\[
\leq \frac{1}{\lambda r,s} \left| \left\{ (k,l) \in I_{r,s} : D\left(\left\| x_{k,l}^n - L_n \right\|, 0 \right) + D\left(\left\| L_n - L \right\|, 0 \right) \geq \varepsilon \right\} \right|
\]

\[
+ D\left(\left\| x_{k,l} - x_{k,l}^n \right\|_{\infty}, 0 \right) \]

\[
\leq \frac{1}{\lambda r,s} \left| \left\{ (k,l) \in I_{r,s} : D\left(\left\| x_{k,l}^n - L_n \right\|, 0 \right) + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} \geq \varepsilon \right\} \right|
\]

\[
\leq \frac{1}{\lambda r,s} \left| \left\{ (k,l) \in I_{r,s} : D\left(\left\| x_{k,l}^n - L_n \right\|, 0 \right) \geq \frac{\varepsilon}{2} \right\} \right| \to 0 \text{ as } r,s \to \infty.
\]

This gives \(x_{k,l} \to L(\mathcal{FS}_\lambda) \).

Conclusion

In this paper, we give \(\bar{\lambda} \)-statistically convergence, \(\bar{\lambda} \)-statistically Cauchy sequence, strongly \(\bar{\lambda} \)-summable for double sequences in fuzzy normed spaces. In further studies, the \(\bar{\lambda} \)-ideal convergence by using double sequences can be defined and examined in fuzzy normed spaces.

Acknowledgment

We thank to editor and referees for their notable reading, suggestions and also remarks.

References

