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Bearing problems are by far the biggest cause of induction motor failures in the 
industry. Since induction machines are used heavily by the industry, their unex-
pected failure may disturb the production process. Motor condition monitoring 
is employed widely to avoid such unexpected failures. The data that can be ob-
tained from induction machines are non-stationary by nature since the loading may 
vary during their operation. Wavelet packet decomposition seems to better handle 
non-stationary nature of induction machines, the use of this method in monitoring 
applications is limited, since the computational complexity is higher than other 
methods. In this work four-band wavelet packet decomposition of motor vibration 
data is proposed to reduce the computational complexity without compromising 
accuracy. The proposed method is very suitable for parallel computational pro-
cessing by its nature, and as a result it is predicted that the calculation time will be 
shortened further if field-progammable gate array is used in design.
Key words: bearing fault detection, four-band wavelet packet decomposition, 

computational complexity

Introduction

Induction motors are used widely in both industrial and residential environments due 
to their low cost, ruggedness, and easy maintenance. Any interruption to their continued opera-
tion may be costly financially. Therefore, condition monitoring and preventive maintenance of 
such motors is so vital. Sound [1], thermal [2-4], vibration [1, 5], and current signature analysis 
[6] are some of the methods used in motor condition monitoring and preventive maintenance. 
Vibration analysis is the most effective approach in detecting the mechanical faults such as 
bearing problems since the fault related signals are directly obtained by placing vibration trans-
ducers in proper locations. The accessibility was the main shortcoming of this approach but 
recently this limitation is lifted with the introduction of wireless vibration sensor arrays [7, 8].

Fourier analysis, enveloping, and wavelet decomposition are used in the analysis of 
vibration data [9, 10]. The motor speed and mechanical fault related frequencies vary with 
changes in load levels. As a result, the motor fault related frequencies are non-stationary in 
nature. Wavelet decomposition is the most appropriate technique among the aforementioned 
analysis tools for non-stationary signal analysis. The wavelet packet decomposition has a high-
er computational complexity than some of the alternative analysis techniques limiting its use 
in some environments. In order to overcome this limitation caused by increased computational 
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cost, four-band wavelet packet decomposition is used in motor current signature analysis [11, 
12]. In this study, the use of modified four-band wavelet filter bank structure and different ob-
servation windows are proposed to achieve fault detection using vibration data with reduced 
computational complexity. The proposed method does not compromise the detection accuracy.

Motor fault types and characteristic vibration frequencies

The induction motor faults are caused by internal or external sources. External sourc-
es can be divided in three groups [13]: electrical (transient voltage, unbalanced voltage, voltage 
fluctuations), environmental (humidity, temperature, cleanliness), and mechanical (over load, 
poor mounting, pulsating load). On the other hand, internal sources can be divided in two 
groups: electrical and mechanical stresses [5]. 

There are many reasons for bearing faults (previously mentioned): the most important 
are manufacturing errors, improper assembly, loading, operation, lubrication, and fatigue of the 
bearing material [14]. When the spectrum of a healthy and new bearing is examined, it will be 
seen that the vibration of it is very small and looks like random noise. With the start of the fault, 
the vibration generated by the bearing also starts to change. When a rolling-element pass a dis-

continuity in its path a vibration will occur 
as a result. The vibration caused by the dis-
continuities is in the form of pulses. When 
the vibration is inspected it is seen to be pe-
riodic and the period is determined by the 
bearing geometry, such as: pitch diameter, 
ball diameter, number of balls and contact 
angle, and by the location of the discontinu-
ity [14]. A regular ball bearing geometry is 
given in fig. 1.

In the literature these rates are know 
the frequency of bearing or bearing frequen-
cies. These frequencies are: the fundamental 
train frequency (FTF) for a fault on the cage, 
the ball-passing frequency inner-race (BPFI) 
for a fault on the inner-race, the ball-passing 

frequency outer-race (BPFO) for a fault on the outer-race, and the ball-spin frequency (BSF) for 
a fault on the ball. Depending on the rotational speed and bearing geometry these frequencies can 
be calculated using the equations: 
 – Outer race defect frequency:

 BPFO  1  cos
2 r
n BDf f

PD
Φ = − 

 
 (1)

 – Inner race defect frequency:

 BPFI  1  cos
2 r
n BDf f

PD
Φ = + 

 
 (2)

 – Ball defective frequency:
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Figure 1. A regular bearing geometry 
Φ – contact angle, PD – the pitch diameter, and  
BD – the ball diameter
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 – Cage defect frequency:

 FTF
1  1  cos
2

BDf
PD

Φ = − 
 

 (4)

where n is a number of balls and rf  [Hz] is a shaft frequency.

Multi-band wavelet decomposition

There are many transforms for testing finite-energy, periodic, discrete-time signals 
and the most widely used ones are Fourier based transforms. Practically, discrete Fourier 
transform (DFT) is still used for the vibration analysis of bearings under steady-state condition 
since the periodicity depends to the geometry and rotational speed of the bearing. It is possible 
to determine vibration components with reasonable accuracy. On the other hand, if there are 
speed fluctuations because of changing load levels, bearing fault frequency detection in the 
spectra using classical DFT methods is difficult. As a relatively new tool wavelet analysis has 
been used in signal processing applications such as object recognition [15], data compression 
[16], video and image processing [17, 18]. There are some works to determine the bearing 
faults using wavelet transform [19, 20]. The continuous wavelet transform of a finite energy 
signal, ( )s t , with the analyzing wavelet, ( )tψ , is the convolution of ( )s t  with a scaled and con-
jugated wavelet: 

 
1

*2( , ) ( ) dt bW a b a s t t
a

ψ
+∝−

−∝

− =  
 ∫  (5)

where ( )tψ  is the wavelet function, and ( , )W a b  measures the similarity between the signal, 
( )s t , and the analyzing wavelet, ( )tψ , at different scales as defined by the parameter a, and 

different time positions as defined by the parameter b. The 1/2  a−  is used for energy preservation. 
Equation (5) shows that that the wavelet analysis is a time-frequency analysis, or, more proper-
ly termed, a time-scale analysis. The wavelet transform can be also considered as a special fil-
tering operation. The frequency segmentation is obtained by translation and dilation of the an-
alyzing wavelet. The discrete wavelet transform is performed by choosing fixed values 2ma =  
and 2mb n= , where m and n are integer values. Thus, discrete wavelets /2

, ( ) 2 (2 )m m
m n t t nψ ψ− −= −  

can be constructed, which can also constitute an orthonormal basis. The discrete wavelet anal-
ysis can be implemented by the scaling filter, h(n), which is a low-pass filter related to the 
scaling function, ( )tφ , and the wavelet filter, g(n), which is a high-pass filter related to the wave-
let function, ( )tψ :

 1( ) ( ), (2 )
2

h n t t nφ φ= < − >  (6)

 1( ) ( ), (2 ) ( 1) (1 )
2

ng n t t n h nψ ψ= < − >= − −  (7)

The basic step of a fast wavelet algorithm is illustrated in fig. 2 and can be imple-
mented iteratively in signal decomposition. In the decomposition step, the discrete signal s is 
convolved with a low-pass filter, H0, and a high-pass filter, H1, resulting in two vectors cA1 
and cD1. The elements of the vector cA1 are called approximation coefficients, and the ele-



Cekic, Y.: Bearing Fault Detection by Four-Band Wavelet Packet Decomposition 
S94 THERMAL SCIENCE: Year 2019, Vol. 23, Suppl. 1, pp. S91-S98

ments of vector cD1 are called detailed coeffi-
cients. The symbol ↓2 denotes down sam-
pling. 

The M-band wavelet decomposition 
is a direct generalization of the previous 
two-band case [21, 22]. Let ( )xφ  be the scaling 
function satisfying:

 ( ) ( ) ( )
K

x h k M Mx kφ φ= −∑  (8)

In addition, there are M – 1 wavelets which also satisfy:

 ( ) ( ) ( )jj

k
x M h Mx kψ ψ= −∑   (9)

Equations (10) and (11) represents scaling function and M – 1 wavelets in discrete 
form, respectively: 

 ( ) ( )/2i i
ik

K
x M M x kφ φ− −= −∑  (10)

 ( ) ( ) ( )2 , 1, 2, 3, , 1
i

jj i
ik

k
x M M x k j Mψ ψ ψ

− −= − = … −∑  (11)

There is close relation between the M channel filters and M-band wavelets [23]. In 
M channel filter bank the bandwidth of filter is divided into M bands as shown in fig. 3(a). 
Figure 3(b) shows the four-level decomposition of 1-D signal using M band wavelet trans-
form for M = 4. The vibration data is decomposed by four-band wavelets in this study to 
provide reduction in computational complexity. Here, H0(z) is a low-pass, H1(z), and H2(z) 
are band-pass, and H3(z) is a high-pass filters, respectively. During the implementation stage 
of this four band analysis filter, polyphase decomposition is used for finite impulse response 
(FIR) filter realization. In the general case, an M-branch polyphase decomposition of the 
transfer function ( 0[ ] [ ] kN

kH z h k z−== ∑ ), a causal FIR filter of order N is of the form:

H0 2 cA1

cD12H1

s(t)

Figure 2. Basic step of wavelet decomposition

Figure 3. (a) M channel analysis filter bank (b) four-band (M = 4) analysis filter bank
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where
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E hz Mn k z
+

−

=
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with h[n] = 0 for n > N. The [ ]H z  becomes:

 4 1 4 2 4 3 4
0 1 2 3( ) ( ) ( ) ( )[ ]H z E z z E z z E z z E z− − −= + + +  (14)

for four-branch polyphase. 
The overall decimator implementation of the filter bank is indicated in fig. 4(a), 

whereas computationally more efficient structure of fig. 4(b). 
Let the low-pass prototype transfer function:
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Figure 4. (a) Decimator implementation based on Type I polyphase decomposition 
and (b) computationally efficient decimator structure (M = 4)
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where ( )E z


 is the th polyphase component of 0 ( )H z :

 0
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Substituting z  with k
MzW  in eq. (15) we arrive at the M-band polyphase decomposition 

of ( )kH z :

 ( )
1

0
, 0 1( ) ( )

M
k M

k MH z W E z k Mz
−

− −

=

= ≤ ≤ −∑  





 (17) 

where 2 /e j t M
MW − π= , and 1kM

MW =  identity is used. Equation (17) can be written in matrix form:
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where 0 1. k M≤ ≤ −
For 4M =  eq. (18) becomes:
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In this work, a low-pass prototype FIR filter is used with order 55 (N = 55). Magnitude 
responses (dB) of polyphase filters (dB) are given, fig. 5.

Normalized frequency [•πrad sample–1]

M
ag

ni
tu

de
 [d

B]

Magnitude response [dB]

H0 H1 H2H3H2

Figure 5. Four channel uniform DFT analysis filter bank 
(for color image see journal web site)

Test results

The test set-up consists of a three-phase one horsepower squirrel cage induction ma-
chine and a Fuko break as the load. The front-end (rotor side) bearing is 6205 2ZC3 whereas the 
rear-end bearing is 6004 2ZC3. The front-end bearing was tested in this study. The test data is 
collected by National Instruments data acquisition card from a vibration transducer at sampling 
rate of 12.8 kHz for a second. The vibration transducer is mounted on the motor case and is 
perpendicular to the bearing. The vibration data collected from the motor front-end bearing is 
displayed in fig. 6. In each case data for ten runs are collected.

The front-end bearing cage is dented slightly to create a cage defect. The motor is run 
at full load with the Fuko break and the rated speed is around 1450 rpm when operated with the 
line frequency of 50 Hz. The cage defect vibration frequency is calculated using eq. (4) since 



Cekic, Y.: Bearing Fault Detection by Four-Band Wavelet Packet Decomposition 
THERMAL SCIENCE: Year 2019, Vol. 23, Suppl. 1, pp. S91-S98 S97

we also know the bearing geometry. The fundamental defect frequency is around 10 Hz and the 
integer multiples of it are the harmonics. The first two harmonic frequencies (10 and 20 Hz) are 
explored in this study.

In testing, the collected vibration data is decomposed into four bands and passed 
through four stages of filter banks. 

The wavelet coefficients for the lowest frequency band in last three stages are depicted 
in fig. 7.

Figure 6. Bearing vibration data Figure 7. Output of lowest frequency band at last  
three stages
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At the last level 25Hz bandwidth is achieved from such decomposition. Consequently, 
the lowest frequency band has 0 to 25 Hz range covering the first two cage related fault frequen-
cy harmonics. The energy level of the low-pass wavelet coefficients are calculated using root 
mean squares. The average and standard deviation values for ten trials of each case are given 
in tab. 1. The data indicates significant increase (about 70%) in energy levels for the associated 
frequency band in the case of a bearing with a faulty cage.

The computational complexity of a typical two-band (half-band) decomposition with 
widely used Daubechies (db18) filter banks can be compared with the proposed four-band de-
composition by looking at the number of multiplications required for a full decomposition. The 
number of multiplications required to fully decomposing motor vibration data of 12800 points 
into four levels with db18 FIR half-band and a four-band filters are given in tab. 2. The data in-
dicates that the proposed approach results in a lower computational complexity than commonly 
used half-band FIR filters without a compromise in fault detection accuracy.

There is a significant reduction in the number of serial multiplications required for the 
proposed method. Here, the use of parallel processing with an FPGA implementation would 
improve the time performance even further as indicated in the tab. 2. 

Table 1. Cage defect
Average Std deviation

Healthy cage 3.30∙10–3 0.16∙10–3

Faulty cage 5.61∙10–3 0.09∙10–3

Table 2. Computational complexity
Serial Parallel

Daubechies half-band 3.686∙106 1.843∙106

Proposed four-band 2.867∙106 0.717∙106

Conclusion

In this study, the bearing vibration data is analyzed by four-band wavelet packet de-
composition to detect bearing faults. The proposed algorithm detects bearing faults with a better 
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computational complexity than commonly used half-band decomposition algorithms. The pro-
posed algorithm has a higher level of parallel processing and it can provide better time perfor-
mance if implemented on an FPGA system.
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