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This article addresses the effects of heat transfer on magnetohydrodynamic Falk-
ner-Skan wedge flow of a Jeffery fluid. The continuity, momentum and energy bal-
ance equations yield the relevant PDE which are transforms to ODE by exploita-
tion of similarity variables. Strength of optimal homotopy series solutions is prac-
ticed to solved analytically the transformed ODE model of hydromagnetic Falkner-
Skan fluid rheology with heat transfer scenarios. The graphical and numerical il-
lustrations of the result are presented for different interesting flow parameters. 
Numerical values of Nusselt number are tabulated. It is observed that for the Falk-
ner-Skan rheology, the applied magnetic field acts as a controlling agnet which 
controls the fluids velocity up to the desired value whereas Debrorah number en-
hances the fluid velocity.   
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Introduction  

Prandtl [1] introduced the boundary-layer concept for the first time. He described the 

differences between the viscid and inviscid fluid-flow while presented the investigations using 

boundary-layer concept. He concluded that the magnitudes of viscous and inertial forces are 

same near the solid boundaries. Blasius [2] considered the boundary-layer analysis for flow past 

a flat plate and the results obtained were in an excellent agreement with experimental data. The 

2-D boundary-layer analysis for laminar flow was later discussed by Falkner and Skan [3] and 

analysis is presented by use of the similarity variables. The solution of the reduced ODE was 

analyzed by Hartree [4]. Thereafter, ample investigations were presented regarding the Falkner-

Skan flow under different aspects, few recent studies in this regard are reported in [5-10] and 

references therein. It is revealed that because of strong non-linearity, the previous studies were 

often restricted to viscous fluid and provision of numerical solutions only. The numerical solu-

tions are no doubt lacking to predict the real essence for the analysis of the Falkner-Skan fluid 

flow problem and hence the struggle to derive analytical results with series solutions is still 

look promising. It is also recognized now that for different industrial fluids, e.g., artificial fibers, 

paints, molten plastics, blood at low shear rate, food stuffs, shampoo, polymeric liquids, and 
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slurries, exhibit rheological characteristics. The consideration of MHD concepts is significant 

in metallurgy. An important application of MHD flows lies in the distillation of molten materi-

als from non-metallic inclusion through the applied magnetic flux. Keeping in view all these 

motivated facts, the present article aims to describe the Falkner-Skan wedge flow of Jeffery 

fluid for the scenarios MHD and heat transfer. The problem statement and solution is included 

in the next section. Convergence of the series solution is examined [11-20]. Effects of physical 

parameters on velocity as well as temperature profiles is described. Comparison of our achieved 

results with already published data is also made. Beside these, there are many reported studies 

in which the dynamics of MHD nanofluidic problems are investigated in diversified fields, see 

[21-25] and references cited therein. 

Mathematical formulation 

Let us consider the 2-D Falkner-Skan wedge flow of a Jeffery fluid in the presence of 

heat transfer. We further taken into account the analysis of a MHD by exerting the magnetic 

field in a transverse direction of the flow. The surface temperature is denoted by Tw while the 

ambient value T∞ is attained when y tends to infinity. The free stream velocity is denoted by 

U(x). The small magnitude of magnetic Reynolds number is chosen such that we have negligi-

ble induced magnetic field as compared to applied magnetic field. In view of the stated assump-

tions, boundary layer expression that govern the flow and temperature in dimensional form can 

be mathematical given as [26]: 
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with horizontal u and vertical v component of the velocities, ρ – the fluid density, ν – the kine-

matic viscosity, λ1 – the ratio of relaxation to retardation time, λ2 – the retardation time, σ – the 

electrical conductivity, B0 – the magnetic field strength, k – the thermal conductivity, and cp – 

the specific heat. 

The relevant boundary conditions can be written as: 

 u = v = 0,   T = Tw,    y = 0,    u → U(x),   T → T∞,    for y →∞ (4) 

where  

 U(x) = axn,   B(x) = B0x
(n–1)/2 (5) 

If ψ is the stream function then by using the following quantities:  
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Equation (1) is satisfied completely while eqs. (2) to (4) in dimensionless as: 
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where primes denotes the differentiation w. r. t η, M is the Hartman number, Pr – the Prandtl 

number, and β – the Deborah number and are defined: 

 
2

2 0
2

2
M , Pr ,

(1 )

pcB U

a n x


 

 
  


     (10) 

While another important physical quantity, i. e., skin friction coefficient, Cf, is formu-

lated by:  
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The dimensionless form of eq. (11) is: 
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where Rex = axn+1(1 + λ1)/ν denotes the local Reynolds number. 

For Newtonian fluid, system model eqs. (7)-(9) take the form: 
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Results and disscussion 

The graphical and numerical illustration of the results are presented here by using the 

homotopic series results with in convergence region involves the non-zero auxiliary parameters 

0
fc  and 0 .c  The optimal values of the parameters 0

fc  and 0c can be found by using minimal 

procedure based on mean value of squared residual errors as: 
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where 
t f
m m mE E E   is the sum of the two residual errors. The minimization of the mean 

residual errors is carried out through built-in procedure of MATHEMATICA package for 

solving boundary value problems by taking dη = 0.5 and k = 20 in eqs. (15) and (16). The results 

of global convergence parameter for different order 

of the approximation, i. e., m = 2, 4, 6, and 8, are 

tabulated in tab. 1 along with consume time. Ac-

cordingly, in tab. 2, these results are presented for m 

= 4, 8, and 12. The decreasing trend is seen in the 

magnitude of residual errors with increases the pa-

rameter m, i. e., the order of approximations but at 

the cost of significant increase in the computing 

time. The h-curves of f  and θ are plotted to obtain 

the reasonable values of hf and hθ. From fig. 1 it is 

found that the range of auxiliary parameters is –1.7 

≤ (hf, hθ) ≤ –0.5. Figure 2 is presented just to validate 

the results. It is found that the residual error in our 

computation is very small which is nearly equal to 

zero. In tab. 3, numerical results of skin friction co-

efficient, (Rex)
1/2cf, are presented and these results 

show that with increase in skin friction coefficient 

by increasing the parameters η, β, and λ1, whereas 

the positive magnitudes of Hartman number results 

in decrease of the skin friction coefficient. 

  

Figure 1. The h– curves for f and θ Figure 2. Residual error in θ 

Table 1. Results of optimal convergence on 
the basis of residual errors 

m 0
fc  0c  

t
mE  Time 

2.0 -1.24 -1.07 5.12×10–4 5.73 

4.0 -1.16 -0.99 1.58×10–5 66.48 

6.0 -1.02 -0.92 2.05×10–5 5170.48 

8.0 -0.97 -0.90 5.82×10–7 6281.19 

Table 2. Result of individual residual errors 
for m = 8 from tab. 1 

m f
mE  mE

 Time 

4.0 6.14×10–5 4.81×10–6 14.61 

8.0 1.95×10–7 8.67×10–8 100.87 

12.0 4.30×10–9 2.53×10–9 245.7 
 



 

The results for variation in η on f’ are presented 

graphically in fig. 3 which shows that by increasing 

η, the values of the velocity profile also increases. 

The description of streamline illustration for the flu-

ids rheology is presented in fig. 3. This plots shows 

the behavior of momentum boundary-layer near and 

far away from the wall. Figure 4 plots the effect of β 

on f’. It is found that effects of β and η are quite sim-

ilar. The effects of Hartman number and λ1 are dis-

played in figs. 5 and 6, respectively. These results 

show that an increase in the values of Hartman num-

ber retards the flow whereas λ1 causes an increase in 

the velocity profile. Effects of Hartman number and 

Prandtl number on temperature profile, θ, are shown 

in figs. 7 and 8, respectively. It is noticed that the 

temperature field increases when Hartman number 

and Prandtl number are increased, while the thickness 

of thermal boundary-layer decreases by increasing 

Hartman number and Prandtl number. Table 4 shows 

the results of θ’(η), various Prandtl numbers, and 

wedge angle parameters, while  tab 5. represents  the 

 
Figure 3. Result for variation in n on f’ 

 
Figure 4. Result for variation in β on f’ 

 
Figure 5. Result for variation in M on f’ 

 
Figure 6. Result for variation in λ1 on f’ 

Table 3. Result for skin friction coefficients 
for different physical parameters  

N β λ1 M (Rex)1/2Cf 

0.5 0.2 0.1 0.5 0.85193 

1.0 0.2 0.1 0.5 1.14372 

1.5 0.2 0.1 0.5 1.32484 

0.5 0.0 0.1 0.5 0.84193 

0.5 0.2 0.1 0.5 0.89472 

0.5 0.4 0.1 0.5 0.92659 

0.5 0.2 0.0 0.5 0.17139 

0.5 0.2 0.1 0.5 0.25317 

0.5 0.2 0.2 0.5 0.31259 

0.5 0.2 0.1 0.0 1.16423 

0.5 0.2 0.1 0.5 0.91359 

0.5 0.2 0.1 1.0 0.31324 
 



 

results for the laminar boundary layer over a wedge. Tables 4 and 5 prove the validity of our 

work, as our results are in good comparison with already published data. 

 

Figure 7. Result for variation in M on θ 

 

Figure 8. Result for variation in Pr on θ 

Table 4. Numerical values of θ'(η) for various Pr and wedge angel parameters  

 β = 0 β = 0.3 

Pr Present study [27] [28] Present study [27] [28] 

0.1 0.1972 0.1974 0.1980 0.2093 0.2101 0.2090 

0.3 0.3047 0.3054 0.3037 0.3285 0.3290 0.3278 

0.6 0.3928 0.3923 0.3916 0.4288 0.4290 0.4289 

1.0 0.4694 0.4696 0.4696 0.5193 0.5195 0.5195 

2.0 0.7976 0.7972 0.5972 0.6688 0.6690 0.6690 

Table 5. Comparison of the results for the laminar boundary-layer over a wedge  

f''(0) 

β Present study [27] [29] 

0.0 0.4681 0.4683 0.4696 

0.1 0.5877 0.5879 0.5878 

0.2 0.6873 0.6873 0.6876 

0.4 0.8542 0.8536 0.8549 

0.8 1.1189 1.1188 1.1195 

1.0 1.2311 1.2313 1.2312 

Conclusions 

Following are the concluding remarks for the presented study. 

 Non-linearity parameter, n, enhances the flow. Magnetic field reduces the velocity of fluid. 

 By increasing in the intensity of magnetic field, Hartman number decelerates the fluid’s 

velocity and can control the flow field. 

 An increase in the magnetic field increases the momentum boundary-layer. 

 Retardation time acts as a boosting agent. 



 

 Temperature of the fluid increases with increasing magnetic field. 

 The value of the skin friction coefficient increases by increase in the value of the Deborah 

number. 

 Numerical values of Prandtl number and wedge angel parameter are in close approximation 

with already published work. 

 Numerical results for the laminar boundary-layer over a wedge are are in close approxima-

tion with already published work. 

In future, one may investigate modern soft computing based numerical solvers for the 

solution of hydromagnetic Falkner-Skan fluidic systems [30-33]. 

Nomenclature 

B0 – magnetic field strength 
Cf – skin friction coefficient 

0
fc  – non-zero auxiliary parameter 

cp – specific heat at constant pressure 

0c  – non-zero auxiliary parameter 
f

mE  – residual error 
t
mE  – residual error sum 

mE  – residual error 
k – thermal conductivity 
M – Hartman Number 
Pr – Prandtl Number 
Rex – Reynolds number 

T – temperature 
u, v – velocity components 
x, y – axes 

Greek symbols 

β – Deborah number 
λ1 – relaxation time 
λ2 – retardation time 
 – kinematic viscosity 
ρ – fluid density  
σ – electrical conductivity 
ψ – stream function 
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