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A class of boundary value problems can be transformed uniformly to a least 
square problem with Toeplitz constraint. Conjugate gradient least square, a ma-
trix iteration method, is adopted to solve this problem, and the solution process is 
elucidated step by step so that the example can be used as a paradigm for other 
applications.  
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Introduction 

In this paper, we consider a numerical solution to a class of boundary value prob-
lems which have the following form: 
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= ∈
 = ∈∂

 (1) 

where L is a linear differential operator, B – a boundary operator, f(x, y) and g(x, y) are two 
known functions, and Ω ÎR2 is an open bounded domain with boundary ¶Ω. The problem (1) 
arises in many fields such as fluid mechanics and thermal science, and has attracted more and 
more researchers in recent decades [1-6]. By the method of fundamental solutions [1], the 
problem (1) can be transformed uniformly to a set of linear equations C z bn =



  with unknown 
vector z , the circulant or block-circulant matrix Cn, and the given vector b



. So the key to the 
problem (1) is to solve the inverse of the circulant matrix Cn, that is we want to find a matrix 
X, such that CnX = In, or XCn = In.  Note that the previous equations can be regarded as the 
special cases of the corresponding least square problem (with zero residual), together with the 
inverse of the circulant matrix Cn is also the Toeplitz matrix [7-11], so it can be generalized to 
solve the following constrained least square problem: 

 
T

F
X S
min AXB F

n

T
∈

−  (2) 

where A, B ÎRn×n, STn is the Toeplitz matrix set with order n. Obviously, if we choose  
A = Cn, B = In, and F = In, the problem (2) is equivalent to solve the inverse of the circulant 
matrix Cn where STn is the circulant matrix space. 
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We adopt an iteration algorithm  called conjugate gradient least square (CGLS) to 
solve the problem (2) [7, 12-15], our ideas stem from the following facts.  
– The least square problem (2) is equivalent to its norm equation whose coefficient matrix 

is positive [7].  
– The numerical solutions to the norm equation can be solved by Krylov subspace meth-

ods, we choose CGLS as an example in this paper.  
– The main products in CGLS are matrix-vector and matrix-matrix, however the involved 

Kronecker product will increase the computational complexity [12], so we release Kron-
ecker product to get the corresponding matrix form iteration. The matrix iteration reveal 
our methods are effective and feasible. 

Notation. In the rest of paper, Rm×n denotes the space of real m×n matrix. The nota-
tion ⊗ is Kronecker product, and In is the identity matrix with order n. For any matrix  
X = [x1, x2,…, xn] ÎRm×n, XT stands for its transpose, and vec(X) = [x1

T, x2
T,…, xn

T]T

 
is its 

long vector expanded by columns. For any vector v ÎRn, v(i) is its ith component. The norm 
F

 
is the Frobenius norm of matrix, while 2

 
is 2-norm of vector or matrix.  

The co-ordinate and constrained matrix 

The Toeplitz matrix Tn with n
 
order has the following form: 
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 (3) 

where ti, i = 1 – n, 2 – n,…, n – 1 
 
are parameters. Denote the Toeplitz matrix set STn by  

STn = {Tn|Tn is Toeplitz matrix with order n}. 
Suppose  

 

0 1 0 0
0 0 0 0

G
0 0 0 1
0 0 0 0

 
 
 
 =
 
 
  





    





 (4) 

we have 

 1 0 1 1
1 1 0 1 1T (G ) ... G G G ... Gn T T n

n n nt t t t t− −
− − −= + + + + + +  (5) 

Let 

G (G ) , 1 , 2 , ..., 1i i T i n n= = − − −  

then eq. (5) is equivalent to:  
1

1 2 1
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1
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n
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Denote the co-ordinate map by:
 
 

gc(Tn) = (t1–n, t2–n, …, tn–1)T 

and constrained matrix by: 

CT = [vec(G1–n)T, vec(G2–n)T, …, vec(Gn–1)] 

we have 

[(G ) G ]
0

i T j n i i j
tr

i j
 − =

= 
≠

 

and 

vec(Tn) = CTgc(Tn) 

Obviously, 1
1{G }i n

i n
−
= − are the basis of the Toeplitz matrix space STn, and 1

1{ }n
i i nt −

= −

 
are 

the corresponding co-ordinate. 
For any matrix Z ÎRn´n, we begin to represent its co-ordinate gc(Z).

 
It is not difficult 

to verify: 
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Denote by: 

,(Z, ) Z , 1 , 2 , , 1
i

tr i i n n nα β
β α− =

= = − − −∑ 
 

then 
tr(Z, ) trace(Z G )T ii =  

So 

 2
Z G tr(Z, )[ (Z)] trace , 1 , 2 , , 1
G

T i

c i
i

F

ig i n n n
n i

 
= = = − − − 

− 
 

  

Moreover: 

[vec(G )] vec(Z) trace[(G ) Z], 1 , 2 , , 1i T i T i n n n= = − − −
 

Hence, we have the following theorem. 

Theorem 1. Let Toeplitz matrix G be defined by eq. (4), for any Z ÎRn´n, we have 

tr(Z, )[ (Z)] , 1 , 2 , , 1c i
ig i n n n

n i
= = − − −

−


 

and 

[vec(G )] vec(Z) trace[(G ) Z], 1 , 2 , , 1i T i T i n n n= = − − −
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The matrix iteration CGLS 

Denote by: 

TM (B A)C= ⊗    and   vec(F)f =  

then eq. (2) is equivalent to: 

 
2min M

x
x f−  (6) 

whose norm equation is: 

 M M MT Tx f=  (7) 

Equation (7) can be solved by the following iteration CGLS [7, 13]. 

Iteration CGLS 

(1) Initialization.  
Set  

 0 int 0 int, M MT Tx x r f Mx= = −  

and 2
0 0 0 0 2, || || , 1p r r k kρ= = = +  

(2) Iteration. For ,2,1=i  until convergence: 

1

1
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1
, , M M
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k

Tk
k k k k k k k k kT T

k
x x p r r p

p p
ρ

α α α
−
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− − − −

−

= = + = −  

1
1

, ,T k
k k k k k k k k

k
r r p r pρ

ρ β β
ρ −

−
= = = +  

Applying iteration CGLS on eq. (7), we get the corresponding algorithm CGLS_v 
(one can turn to [7, 13, 14] for details). There are two basic operations Mv and MTu in itera-
tion CGLS_v with: 

2 2 22 1, , Mn n n nv R u R R− ×∈ ∈ ∈  

When n increases, they will be very big since the matrix M has Kronecker product, 
which will increase the computational complexity.  

In this section, we want to re-write iteration CGLS_v to CGLS_M whose product is 
only matrix-matrix by releasing Kronecker product. For this end, we should represent the long 
vector Mv and MTu by suitable matrices. 

For the vector v ÎR2n–1 the Toeplitz matrix V ÎSTn can be set by: 
1

1

1
V ( )G

n
i

i n
v i

−
−

= −
= ∑  

then we have: 
Tvec(V) C v=  

So 

TM (B A)C (B A)vec(V) vec(AVB )Tv v= ⊗ = ⊗ =  
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That is, the matrix form of vector Mv
 
is AVBT

.
  Note that:

 
T TM C (B A )vec(U) C vec(A UB)T T T T T Tu = ⊗ =  

Denote by: 

U A UBT=  

we should compute the vector vec(U)T
TC and get its matrix form to represent MTu.  

With Theorem 1, we have: 
1 2 1(U) {trace[(G ) U], trace[(G ) U], , trace[(G ) U]}T n T n T n T T

TC vec − − −= 
 

Hence, the matrix form of vector MTu can be chosen by: 

)( uMP T
C  =

1

1
trace[(G ) U]

n
i T

i n

−

= −
∑  

So algorithm CGLS_v can be re-written as its matrix form iteration CGLS _M. 

Iteration CGLS_M 

(1) Initialization.  

Set 0 int 0 0X X , (M M AX B )T T T
CR P f= = −  

and 2
0 0 0 0 2, || ( ) || , 1cP R g R k kρ= = = +  

(2) Iteration. For ,2,1=i  until convergence: 

T[M Mvec(P)], [C vec( )]T T
C CP P W P P= =   

0 , X X P, R R W
(P)cg
ρ

α α α= = + = −  

2 1
1 0 12

0
(R) , , , P R Pcg ρ

ρ β ρ ρ β
ρ

= = = = +  

Check the convergence by 2(R)cg τ<  with given number .τ
 Numerical examples 

In this section, we present two numerical examples to illustrate the effectiveness of 
our proposed iteration. For the test matrices A, B, the right-hand side matrix F and the residu-
al error e are set by: 

F AXB , F AXBT T
F

ε= = −  

with X S ,
nT∈

 
so the expected error e should be zero. 
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We report the numerical results by iteration CGLS_M. All examples are performed 
by mathematical software on a personal computer of the Intel Core CPU i5 5300U with 4G 
memory. 

Example 1. In this example, we test the residual error of least square problem (2), 
the matrices A, B are set by: 

1 2 1 2A U diag( , , , )V , B U diag( , , , )V
A B

n n
A A A A B B B Bσ σ σ σ σ σ= =   

where singular values niσσ i
B

i
A ,,2,1,,  =  are randomly chosen and the orthogonal ma-

trix: UA, UB, VA, and VB are set by: 

[U , temp] (1 2rand( ), [V , temp] (1 2rand( )A Aqr n qr n= − = −  

[U , temp] (1 2rand( ), [V , temp] (1 2rand( )B Bqr n qr n= − = −  

The Toeplitz matrix X S
nT∈  is set by (5). 

For the given stopping criteria 1110 ,τ −=  the iteration numbers and the CPU time 
seem to depend on the matrix size n. As n increases, the CPU time grows quickly, but e 
changes a little. In tab. 1, we list the CPU time, e, and iteration numbers for different values of 
n, respectively. 

Example 2. In this example, we consider the inverse of circulant matrix. The circu-
lant matrix X S

nT∈ is set by eq. (5) with suitable parameters. The matrix size varies from n  = 
20 to n  = 500 and the stop stopping criteria 1110−=τ , respectively. In tab. 2, we list the CPU 
time and error residual for different values of n, respectively. 

Table 1. The CGLS_M for least square problem 
with Toeplitz constraint 

n e CPU time Iteration 
numbers 

20 7.06·10–12 0.02 56 

50 1.57·10–12 0.26 236 

100 7.34·10–11 4.01 540 

200 3.74·10–11 35.32 781 

300 1.98·10–10 102.44 1187 
 

 
Table 2. The CGLS_M for the inverse of circu-
lant matrix 

n e CPU time Iteration 
numbers 

20 5.01·10–11 0.02 15 

50 1.58·10–11 0.26 40 

100 7.34·10–11 1.14 70 

200 5.66·10–10 9.36 145 

300 3.98·10–10 41.67 187 
 

Conclusion 

This paper reports the iteration CGLS for least square problem with Toeplitz matrix 
constraint, whose special case is the inverse of the circulant matrix. We can use it to solve a 
class of boundary value problems. Compared with the existing methods, our iteration only in-
volves matrix-matrix product and it is easy to be implemented. 
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