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With the aid of symbolic computation, we derive new types of variable separation 
solutions for the (2+1)-dimensional Schwarzian Korteweg-de Vries equation 
based on an improved mapping approach. Rich coherent structures like the soli-
ton-type, rouge wave-type, and cross-like fractal type structures are presented, 
and moreover, the fusion interactions of localized structures are graphically in-
vestigated. Some of these solutions exhibit a rich dynamic, with a wide variety of 
qualitative behavior and structures that are exponentially localized. 
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Introduction 

In the line with the development of symbolic computation, much work has been fo-
cused on the various extensions and application of the known algebraic methods to construct 
solutions of non-linear evolution equations [1-4]. Special solutions, such as dromions, soliton 
excitations, and other coherent structures, which might be useful in explaining some phenom-
ena in both mathematics and physics, were discussed in open literature [5-8]. The abundant 
localized coherent structures such as dromion, peakon, compacton, and ring soliton were in-
vestigated [9] and recently, there is much interest in integrable (2+1)-D equations, i. e., equa-
tions with two spatial variables and one temporal variable [10-13].  

In this paper, we pay our attention to construct a localized structure by a projective 
equation method [14] to obtain a variable separation solution of an integrable (2+1)-D equa-
tion, i. e., 
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where 1 d .x f f x−∂ = ∫  
Equation (1) was firstly introduced by Kudryashov and Pickering [15] for a flow 

problem, it is an extension of the well-known Korteweg-de Vries (KdV) equation. Equation 
(1) is generally called as Schwarzian Korteweg-de Vries equation or the Schwarz-Korteweg- 
-de Vries equation.  
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It is easy to see that eq. (1) is readily expressed as [16]: 
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where j denotes relation H = jx and S2+1[j;x] is the Schwarz derivative of j defined as: 
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The integrability of eq. (1) is proved by Toda and Yu [17] in the sense of Weiss-Ta-
bor-Carnevale Painleve expansion, and the solution properties has been investigated [18-21]. 

Variable separation solution for (2+1)-D SKdV Equation 

In this section, the projective equation method is applied to study eq. (1). Although 
this (2+1)-D SKdV equation appears in a nonlocal form, by using the following transfor-
mations: 

 , exp( ), ,x x tH U Vϕ ϕ Φ Φ Φ= = = =  (4) 

we can rewrite eq. (3) in the following system of differential equations: 

 2 2 2 44 4 3 3 0x x xxy xx y x xy x y yU V UU V U U UU U UU U U U U U− + − − + − =  (5) 

 0t xU V− =  (6) 

Along with the projective equation method, we assume that eqs. (5) and (6) posses 
solutions in the form: 
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where a0(X), ai(X), b0(X), bi(X) (i = 1, 2, …, m; j = 1, 2, …, n), and Ψ(X) are all functions of X 
to be determined and F[Ψ(X)] satisfies the Riccati equation: 

 2[ ( )] [ ( )]F X F Xψ δ ψ′ = +  (8) 

with the following solutions: 
(1) When 0,  [ ( )] 1/[ ( )]F Ψ X Ψ Xδ = = −  
(2) When 0,  [ ( )] tanh ( )F X Xδ Ψ δ δΨ < = − − −   
(3) When 0,  [ ( )] tan ( ) .F X Xδ Ψ δ δΨ > =    

By balancing the linear term of the highest-order with the non-linear term in eq. (5), 
we get m = n = 1. Inserting eqs. (7) and (8) into eqs. (5)-(6), selecting the variable separation 
ansatz: 

 ( , ) ( )p x t q zΨ = +  (9) 

and eliminating all the coefficients of polynomials of F, one gets a set of partial differential 
equations. Solving the set of differential equations simultaneously, we obtain the following 
results: 
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 0 0 1 10,    0,    ,    x ta b a p b pδ = = = = =  (10) 

and p(x, t) satisfies p = p [k(x + t)]. 
Inserting eqs. (10) and (9) into eqs. (7) and (4), taking the integration constant as 

C(z, t), the corresponding variable separation solution of eq. (1) reads as: 
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where p = p(x + t), q = q(z) and C = C(z, t) are three arbitrary functions. 

New coherent structures of eq. (1) 

In this section, we will construct new coherent structures for the solution (11). Ow-
ing to the arbitrary functions p(x, t), q(z), and C(z, t) involved in the solution (11), it is con-
venient to excite soliton structures. After attempts, we construct a new class of novel localized 
structures as follows. 

(1) Two solitons collision 

If we choose the arbitrary functions p(x, t), q(z) and C(z, t) as: 
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respectively, the two solitons collision with parabolic motion can be obtained, see fig. 1(a). 

 
Figure 1. (a) Two solitons collision (a = b = 2, c = 0.5, k = r = 1, t = 0), (b) rogue wave (a = 0.25,  
b = 0.125, c = 4, k = 0.5, t = 0) 

(2) Rogue wave  

When p(x, t), q(z), and C(z, t) possess the following forms: 
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respectively, the rogue wave structure can be obtained and shown in fig. 1(b). The maximum 
amplitude of the rogue wave solution increases inversely with the parameter b. 

(3) Cross-like fractal soliton 

If we let: 
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respectively, the cross-like fractal structures can be obtained by setting the variable t and the 
parameters a, b, d, k, and r at special values as seen in fig. 2: 

 
Figure 2. The cross-like fractal soliton 

Figures 2(a) and 2(b) give the figures of the solution (11) with the settings blow, but 
x, and z in, respectively, [−5·10−6,−5·10−6], [−5·10−12,−5·10−12]. The essential property of the 
fractal structures is the similarity of the figures in different axis scales. Figure 2 demonstrate 
that the cross-like fractal soliton holds its similarity in different ranges of x, and z. 

(4) Fusion interaction between three peakons 

Localized solutions might be helpful to the propagation processes for non-linear 
waves in (2+1)-D equations. Peakons are some types of weak solutions of the (2+1)-D equa-
tions, and there is a finite discontinuity of the first derivative in the wave peak [22, 23]. When 
p(x, t), q(z), and C(z, t) are: 

 [ ] 2( , ) 1 ( )exp ( ) , ( ) 1p x t b x t a x t q z kz= + + + = +  (12) 

 2 2 2( , ) 0.1 Sech [ ( )]c z t r z t= + −  (13) 

respectively, a fusion phenomenon between three peakons will be found, see fig. 3. Figure 3 
shows an interaction phenomenon for three solitons. Two peakons are approaching to the 
third soliton along the z-axis direction fusing at the time t = 0, and then they leave along the  
z-axis, annihilate with the time increasing, their interaction is completely non-elastic. 
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Figure 3. The annihilation plots with condition (12) and (13) at different times; (a) t = −2, (b) t = 0,  
(c) t = 2, and (d) t = 4 

Conclusion 

In this paper, we applied an improved mapping method and a variable separation 
hypothesis to the (2+1)-D SKdV equation and obtained a general variable separation solution 
with three arbitrary functions. Based on the general variable separation solution, abundant 
novel localized excitations, such as oscillating soliton, rogue wave and cross-like fractal struc-
tures have been constructed. The arbitrary functions in the obtained solutions imply that these 
solutions have rich spatial structures. It may be helpful in future studies for the intricate nature 
world. This method can be also extended to the other higher dimensional non-linear equa-
tions. 
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