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Constructing exact solutions of non-linear PDE is of both theoretical and practi-
cal values. In this paper, a modified F-expansion method is proposed to construct 
exact solutions of non-linear PDE. To illustrate the validity and advantages of 
the proposed method, a (3+1)-D potential Yu-Toda-Sasa-Fukuyama equation is 
considered and more general exact solutions with external linear functions are 
obtained including Jacobi elliptic function solutions, hyperbolic function solu-
tions, and trigonometric function solutions. It is shown that the original F-
expansion method can not construct exact solutions of the potential Yu-Toda-
Sasa-Fukuyama equation but the modified method is valid. The modified F-
expansion method can lead to such exact solutions with external linear functions 
which possess a remarkable dynamical property, which is the solitary wave does 
not propagate in the horizontal direction as the traditional waves. The modified 
F-expansion method can be used for exactly solving some other non-linear PDE. 
Key words: potential Yu-Toda-Sasa-Fukuyama equation, modified F-expansion 

method, Jacobi elliptic function solution, hyperbolic function 
solution, trigonometric function solution 

Introduction 

As we know that non-linear PDE are often used to describe some non-linear phe-
nomena of the real world involved in many fields from physics to biology, economics, chem-
istry, mechanics, fluid dynamics, engineering, control theory, etc. Usually, researchers inves-
tigate solutions of such non-linear PDE to gain more insight into these physical phenomena 
for further applications. In the past several decades, searching for exact solutions of non-linear 
PDE has become one of the most important and significant tasks. Many effective methods for 
constructing exact solutions of non-linear PDE have been proposed, such as the inverse scat-
tering method [1], Backlund transformation [2], Darboux transformation [3], Hirota’s bilinear 
method [4], Painleve expansion [5], homogeneous balance method [6], auxiliary equation 
method [7], and exp-function method [8-10]. 

In 2003, the so-called F-expansion method was proposed by Liu et al. [11] to con-
struct exact solutions of non-linear PDE, which can be thought of as an over-all generalization 
of Jacobi elliptic function expansion method [12-14]. The F-expansion method has been ap-
plied to many non-linear PDE like those in [15-17] and was improved in different manners 
[18-21]. The present paper is motivated by the desire to propose a modified F-expansion 
method to further extend the application scope of the F-expansion method [11]. In order to il-
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lustrate the validity and advantages of the modified method, in this paper we shall consider 
the (3+1)-D potential Yu-Toda-Sasa-Fukuyama (pYTSF) equation [22]: 

 4 2 3 0xt xxxz x xz xx z yyu u u u u u u− + + + + =  (1) 

It should be noted that eq. (1) can be derived from the (3+1)-D YTSF equation: 

 2 1[ ( ) ] 3 0, ( ) 4 2t z x yy x x xv v v v v v v −− + Φ + = Φ = ∂ + + ∂  (2) 

by setting the potential v = ux. The (3+1)-D YTSF eq. (2) was derived by Yu et al. [23] in the 
process of extending the (2+1)-D Bogoyavlenskii-Schif (BS) equation [24]: 

 2 1( ) 0, ( ) 4 2t z x x xv v v v v v −+ Φ = Φ = ∂ + + ∂  (3) 

to (3+1)-D non-linear evolution equation. Thus, there are two ways through which the  
(1+1)-D Korteweg-de Vries equation: 

 2 1( ) 0, ( ) 4 2t x x x xv v v v v v −+ Φ = Φ = ∂ + + ∂  

can be extended to the (3+1)-D YTSF eq. (2). The first way is through the BS eq. (3), and the 
other one is through the (2+1)-D Kadomtsev-Petviashvili equation:  

 2 1[ ( ) ] 3 0, ( ) 4 2t x x yy x x xv v v v v v v −− + Φ + = Φ = ∂ + + ∂   

Modified F-expansion method 

In this section, let us outline the basic idea of the modified F-expansion method. For 
a given non-linear PDE, say, in four variables x, y, z, and t: 

 ( , , , , , , , , , ) 0x y z tP x y z t u u u u u =  (4) 

we first use the following transformation: 

 ( ),u u ax by cz tξ ξ ω= = + + −  (5) 

where a, b, c, and ω are constants, then eq. (5) is reduced into an ODE: 

 ( ) ( 1)( , , , , , , , ) 0r rE x y z t u u u + =  (6) 

here u(i) = diu/dξ i (i ≥ r), and r is the least order of derivatives in the equation. As pointed out 
in [25], if E is a total ξ-derivative of another function, integrating eq. (6) with respect to ξ we 
further reduce the transformed equation. 

Secondly, we search for exact solutions determined by: 

 ( )
0

1
( ) ( ) ( ) , 0

m
r i

i m
i

u v Fξ ξ α ξ α α
=

= = + ≠∑  (7) 

where αi (i = 0, 1, 2, …, m) are all constants to be determined, F(ξ) satisfies the auxiliary 
ODE: 

 2 4 2( ) ( ) ( )F PF QF Rξ ξ ξ′ = +  (8) 
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and hence holds: 

 
( )

( )

3

3 2

4 2 5 3 2

( ) 2 ( ) ( )

( ) 6 ( ) ( )

( ) 24 ( ) 20 ( ) ( 12 ) ( )

F PF QF

F PF Q F

F P F PQF Q PR F

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ ξ

 ′′ = +


  ′= + 
 = + + +

 

 (9) 

where P, Q, and R are parameters, a direct computation from eq. (7) gives: 

 ( 1) 1

1
( ) ( ) [ ( ) ( )]

m
r i

i
i

u v i F Fξ ξ α ξ ξ+ −

=

′ ′= =∑  (10) 

 ( 2) 2 2 1

1 1
( ) ( ) ( 1) ( ) ( ) ( )

m m
r i i

i i
i i

u v i i F F i F Fξ ξ α ξ α ξ ξ+ − −

= =

′′ ′ ′′= = − + =∑ ∑  

 2 4 2 1 3

1 1
( 1) ( )[ ( ) ( ) ] ( )[2 ( ) ( )]

m m
i i

i i
i i

i i F PF QF R i F PF QFα ξ ξ ξ α ξ ξ ξ− −

= =
= − + + + +∑ ∑  (11) 

and so on. Here the prime denotes the derivative with respect to ξ. 
To determine u explicitly, we take the following four steps. 
Step 1. Determine the integer m by substituting eq. (7) along with eq. (8) into eq. (6), 

and balancing the highest order non-linear term(s) and the highest order partial derivative. 
Step 2. Substitute eq. (7) given the value of m determined in Step 1 along with eqs. 

(8) and (9) into eq. (6) and collect all terms with the same order of F 

j(ξ)F ′ s(ξ) (j = 0, 1, 2, …;  
s = 0, 1) together, the LHS of eq. (6) is converted into a polynomial in F 

j(ξ)F ′ 

s(ξ). Then set 
each coefficient of this polynomial to zero to derive a set of algebraic equations for a, b, c, ω, 
αi (i = 0, 1, 2,…, m). 

Step 3. Solve the system of algebraic equations obtained in Step 2 for a, b, c, ω,  
αi (i = 0, 1, 2,…, m) by use of MATHEMATICA. 

Step 4. Use the results obtained in previous steps to derive a series of fundamental 
solutions v(ξ) of eq. (7) depending on F(ξ), since eq. (8) has different types of Jacobi elliptic 
function solutions [21], then we can obtain exact solutions of eq. (4) by integrating each of the 
obtained fundamental solutions v(ξ) with respect to ξ, r times: 

 
2

1 1 1
1

( ) ( )d d d
r r

r j
r r j

j
u u v d

ξ ξξ

ξ ξ ξ ξ ξ ξ −
−

=
= = +∑∫ ∫ ∫   (12) 

where dj (j = 1, 2,…, r) are arbitrary constants. 
Remark 1. It can be easily found that when r = 0, u(ξ) = v(ξ), and then eq. (7) be-

longs to the case used in [11-16]. Under this circumstance, the method proposed in present 
paper is same as that of [11-16]. However, when r ≥ 1, eq. (12) maybe contains an explicit 
polynomial in ξ even if it is simplified. Such a solution can not be obtained by either the  
F-expansion method [11] or its improvements [17-21], see the example in the next section for 
more details. Therefore, the proposed method can be seen as a modified version of Liu et al.’s 
[11] F-expansion method. 
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Exact solutions 

Let us consider in this section the (3+1)-D pYTSF eq. (1). We have the following 
Theorem 1. 

Theorem 1. Let eq. (8) as the auxiliary ODE, the (3+1)-D pYTSF eq. (1) has a kind 
of formal solution: 

 ( )2 2
0

2( ) 2 ( )d 3
3

u aP F a Q Q PR cξ ξ ξ ξ= − − ± − +∫  (13) 

where c0 is an arbitrary constant, and ξ is determined by: 

 
( )

( )
2 2

3 2 2

3 (3 4 )

4 3 3

Q Q PR b a
ax by z t

a Q PR Q Q PR

ω
ξ ω

± − +
= + + +

− ± −
 (14) 

Proof. Using the transformation (5), we reduce eq. (1) into an ODE of the form:  

 3 (4) 2 26 (4 3 ) 0a cu a cu u a b uω′ ′′ ′′+ + + =  (15) 

Integrating eq. (15) once with respect to ξ and setting the integration constant as zero 
yields: 

 3 2 2 23 (4 3 ) 0a cu a cu a b uω′′′ ′ ′+ + + =  (16) 

further letting r = 1 and u' = v, we have: 

 3 2 2 23 (4 3 ) 0a cv a cv a b vω′′ + + + =  (17) 

According to Step 1, we get m + 2 = 2m, hence m = 2. We then suppose that eq. (17) 
has a formal solution: 

 2
0 1 2( ) ( ) ( )v a a F a Fξ ξ ξ= + +  (18) 

and substitute it into eq. (17), the following equation is obtained: 

 
2 2 2 2 2 2 2

0 0 0 1 0 1 1 23 3 4 3 ( ) 6 ( ) 4 ( ) 3 ( )a b a a c aa a b F a a a cF aa F a b Fω ξ ξ ω ξ ξ+ + + + + + +  

 2 2 2 2 2 2 2 3
1 0 2 2 1 23 ( ) 6 ( ) 4 ( ) 6 ( )a a cF a a a cF aa F a a a cFξ ξ ω ξ ξ+ + + + +  

 3 2 4 3 2 3 3
2 2 1 23 ( ) 2 ( ) ( ) 2 ( ) ( ) 0a a cF a a cF a a cF a a cF Fξ ξ ξ ξ ξ′ ′′ ′′+ + + + =  (19) 

which gives the following equation by the use of eq. (9): 

 
2 2 2 3 2 2

0 0 2 0 1 0 13 3 2 4 3 ( ) 6 ( )a b a a c a a cR aa a b F a a a cFω ξ ξ+ + + + + +  

 3 2 2 2 2 2
1 1 2 1( ) 4 ( ) 3 ( ) 3 ( )a a cQF aa F a b F a a cFξ ω ξ ξ ξ+ + + + +  

 2 2 3 2 2 2 3
0 2 2 2 1 26 ( ) 4 ( ) 4 ( ) 6 ( )a a a cF a a cQF aa F a a a cFξ ξ ω ξ ξ+ + + + +  

 3 3 2 2 4 3 4
1 2 22 ( ) 3 ( ) 6 ( ) 0a a cPF a a cF a a cPFξ ξ ξ+ + + =  (20) 
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from which we have: 

 0 2 2 2 3
0 0 2 0( ): 3 3 2 4 0F a b a a c a a cR aaξ ω+ + + =  (21) 

 1 2 2 3
1 0 1 1 1( ): 3 6 4 0F a b a a a c a a cQ aaξ ω+ + + =  (22) 

 2 2 2 2 2 3
2 1 0 2 2 2( ): 3 3 6 4 4 0F a b a a c a a a c a a cQ aaξ ω+ + + + =  (23) 

 3 2 3
1 2 1( ): 6 2 0F a a a c a a cPξ + =  (24) 

 4 2 2 3
2 2( ): 3 6 0F a a c a a cPξ + =  (25) 

Solving above set of algebraic eqs. (21)-(25) by use of MATHEMATICA yields: 

 
( )

( )
( )

2 2
2

2 1 0
3 2 2

3 (3 4 ) 22 , 0, , 3
34 3 3

Q Q PR b a
a aP a c a a Q Q PR

a Q PR Q Q PR

ω± − +
= − = = = − ± −

− ± −
(26) 

we, therefore, have eqs. (13) and (14). The proof is end. 
When we employ eqs. (13) and (14), many exact solutions of eq. (1) can be ob-

tained. For example, selecting P = –m2, Q = 2m2 – 1, R = 1 – m2, F(ξ) = cnξ, we obtain Jacobi 
elliptic function solution of eq. (1): 

 ( )2 2 2 4 2
0

2( ) 2 d 2 1 1
3

u am cn a m m m cξ ξ ξ ξ= − − ± − + +∫  (27) 

with 

 
( )
( )

2 4 2 2

3 4 2 2 4 2

2 1 1 (3 4 )

4 1 (2 1) 1

m m m b aax by z t
a m m m m m

ωξ ω− ± − + +
= + + +

− + ± − − +
 (28) 

Results and discussion 

In order to further observe the obtained previous solutions, we show the dynamical 
evolutions of solution (27) with (+) branch in fig. 1, where the parameters are selected as  
a = 1, b = 1, ω = 1, and c0 = 1. It is easy to see from fig. 1 that such a solution (27) with ex-
ternal linear function ξ possess a remarkable dynamical property: the solitary wave does not 
propagate in the horizontal direction as the traditional waves do. 

Using the properties of Jacobi elliptic functions in the limits at m → 1 and m → 0 
[21], we can also obtain some hyperbolic function solutions and trigonometric function solu-
tions from previously obtained Jacobi elliptic function solutions. For example, when m → 1, 
solution (27) becomes: 

 2
0 0

2 2( ) 2 sech d (1 1) 2 tanh (1 1)
3 3

u a a c a a cξ ξ ξ ξ ξ ξ= − ± + = − ± +∫  (29) 

with 

 
( )

2

3
(1 1)(3 4 )

4 1 1
b aax by z t

a
ωξ ω± +

= + + +
±

 (30) 
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and when m → 0, the Jacobi elliptic function solution determined by P = 1/4, Q = (1 – 2m2)/2,  
R = ¼, and F(ξ) = nsξ ± csξ becomes: 

 2
0

1 1( ) (csc cot ) d (2 1)
2 6

u a a cξ ξ ξ ξ ξ= − ± − ± +∫  (31) 

where 

 
2

3
(2 1)(3 4 )

(1 2)
b aax by z t

a
ωξ ω± +

= + + +
±

 (32) 

 
Figure 1. Dynamical evolutions of Jacobi elliptic function solution determined by eq. (27)  
with m = 0.6; (a) z = 0, t = 0, (b) x = 0, y = 0, z = 0 

If we use Liu et al.’s method [11] to solve the (3+1)-D pYTSF eq. (1), usually we 
will balance u"' and u'2 in eq. (16) and hence obtain m + 3 = 2(m + 1), namely m = 1. We then 
suppose that eq. (16) has solution in the following form: 

 0 1( ) ( )u a a Fξ ξ= +  (33) 

and substitute it into eq. (16), the following equation can be obtained: 

 
2 2 2 2 2 2 2 4 2 3

1 1 1 1 13 3 ( ) 3 ( ) 3 ( ) ( )a a cR a a cQF a a cPF a b F a a cQFξ ξ ξ ξ′ ′+ + + + +  

 3 2
1 14 ( ) 6 ( ) ( ) 0aa F a a cPF Fω ξ ξ ξ′ ′+ + =  (34) 

from which we have 

 2 2 2 2 2 2 2 3 3
1 1 1 1 1 1 13 3 3 3 4 6 0a a cR a a cQ a a cP a b a a cQ aa a a cPω= = = + + = =  (35) 

and further obtain a1 = 0 if considering the general case when acPQR ≠ 0. In this case, we can 
only obtain trivial solution of eq. (1), this is not the one we expect.  

It is obvious to see from previous comparison that all the Jacobi elliptic function so-
lutions, hyperbolic function solutions and trigonometric function solutions obtained in this 
paper can not be obtained by eq. (33) usually used in Liu et al.’s method [11] and its im-
provements [17-21] if we do not transform eq. (16) into eq. (17) but directly solve eq. (16). In 
this sense, we may conclude that the modified F-expansion method proposed in this paper is 
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different from and superior to Liu et al.’s [11] method if and only if the reduced ODE (6) pos-
sesses property r ≥ 1.  

Remark 2. All the solutions previously obtained have been checked with MATHE-
MATICA by putting them back into the original eq. (1). 

Conclusion 

In summary, more general travelling wave solutions of the (3+1)-D pYTSF eq. (1) 
have been obtained owing to the modified F-expansion method proposed in this paper. The 
obtained Jacobi elliptic function solutions, hyperbolic function solutions, and trigonometric 
function solutions contain an explicit linear function of the variables in the pYTSF equation. 
It may be important to explain some physical phenomena. The paper shows the effectiveness 
and advantages of the proposed method beyond the original F-expansion method [11] and its 
existing improvements [17-21] in handing of the solution process of non-linear PDE. Employ-
ing the modified F-expansion method to solve some other non-linear PDE is our task in the 
future. 
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