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When coagulation and breakage proceed simultaneously, a steady-state distribu-
tion may exist due to the opposite effects on particle size. In this paper, a moment 
model using Taylor-series expansion technology for particles undergoing Brown-
ian coagulation and equal size multiple breakage is proposed, then the steady- 
-state solutions of this model are obtained. 
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Introduction 

Particle coagulation and breakage play an important role in many fields of aerosol sci-
ence, and may occur simultaneously in some cases, such as the last steps of nucleation, combus-
tion, and molecular growth [1, 2]. The earliest studies about these problems usually focused ei-
ther on coagulation or breakage alone, except the well-known Blatz-Tobolsky model [3]. Using 
a similarity transform, the asymptotic solutions for Brownian coagulation both in the continuum 
and free molecule regime and breakage with a power-law breakage rate kernel at long times are 
obtained respectively [4-6]. Furthermore, Pulvermacher and Ruckenstein [7] shows that the 
similarity transform can be also explored to homogenous coagulation kernels.  

When coagulation and breakage simultaneously occur, a steady-state distribution 
may exist due to the competition between these two processes. Considering some simple ker-
nels, Vigil and Ziff [8] conjectured that the stable condition should satisfy 1 + η – λ > 0 for 
particle systems with homogeneous rate kernels of order η (fragmentation) and λ (coagula-
tion). Then Diemer and Olson [9] explored similarity transform to more general coagulation 
kernels, and yield the steady-state distribution for very large and very small particles. 

With the relative simple construction, the Taylor-series expansion method of mo-
ments (TEMOM) has a great advantage on the analytical and asymptotic analysis of particle 
size evolution [10-23]. In this paper, we will develop a TEMOM model considering Brownian 
coagulation both in the free molecule and continuum regime in coincidence with an equal size 
multiple breakage process, and the corresponding steady-state solutions are obtained. 
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Mathematical model 

The particle balance equations for particles undergoing coagulation and breakage 
can be represented: 
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where n(υ, t)dυ is the number of particles per unit spatial volume with particle volume from υ 
to υ + dυ at time t, β – the collision kernel of coagulation, a(υ) – the breakage rate kernel,  
b(υ, υ1) – the probability of making a daughter of size υ from a parent of size υ1. The first two 
terms of RHS represent the birth and death of particles with volume υ due to coagulation re-
spectively and the latter two terms for breakage. With the definition of kth order moment Mk:  
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equation (1) can be transformed into a set of moment equations: 
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There are several different mechanisms which lead to particle coagulation and 
breakage, for example, Brownian coagulation based on the random motion of particles, shear 
coagulation resulted from the fluid viscosity gradient, and a summary of breakage can be 
found in [24]. Here the Brownian coagulation in the free molecule and continuum regime and 
the self-similar equal size breakage with a power-law breakage rate are considered, in which 
cases the kernels are: 
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where the constants B1 = (3/4π)1/6(6kBT/ρp)1/2 and B2 = 2kBT/3μ, kB is the Boltzmann’s constant, T 
– the temperature, ρp – the particle density, μ – the gas viscosity, k1 is a constant independent of 
particle size, and η ranges between 0 and 1, l (l ≥ 2) – the number of daughter particles υ result-
ing from a breakage event of a single particle with volume υ1. The TEMOM models for Brown-
ian coagulation have been investigated in many studies [12, 15, 20], and now only a brief deri-
vation for breakage process is showed. Substituting eqs. (4c) and (4d) into eq. (3), we can get: 
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Using the three order Taylor-series expansion approximation, the kth fractional order 
moment can be approximated as [20, 25]: 
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where MC = M0M2/M1
2 is a dimensionless moment indicating the dispersity of the system. 

Thus eq. (5) can be enclosed without any prior assumption about the particle size distribution: 
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Steady-state solution of TEMOM model in the  
free molecule regime with breakage 

Whether the steady-state distribution exists depends on the ratio γ of dM0/dtFM to 
dM0/dtBR: 
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where f(MC, η, l) is a function of MC, l and η: 
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For a given case, l and η are invariable and MC tends to a constant at long time, 
which means f(MC, η, l) is also a fixed value. Thus the ratio γ can be simplified: 

 5/3
0M ηγ +∝  (10) 

When γ > 1, that means the rate of coagulation is larger than that of breakage and M0 
decreases, then γ will decrease. When γ < 1, that means the rate of coagulation is smaller than 
that of breakage, and γ will increase as M0 increases. This suggests that the evolution tends to 
an equilibrium state at which γ = 1, and in this case we can get: 
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Divide the first equation of eq. (11) by the second one for both the sides, a third- 
-order algebraic equation of MC can be obtained after some operation: 
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in which the coefficients c1, c2, c3, and c4 are: 
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Its solution can be obtained as [14]: 
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where the parameters d1, d2, and d3 are:  
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Then the solution of M0 and M2 can be also gotten together with eq. (11). The rela-
tionship between MC and η with different l at a steady-state are showed in fig. 1(a). In general, 
we observe that MC decreases monotonically when l equals to 2 with η varying from 0 to 1, 
but for a larger l, MC will decrease first and then increase. 

Steady-state solution of TEMOM model in the  
continuum regime with breakage 

In this case the ratio γ of dM0/dtCR to dM0/dtBR is: 

 1
0M ηγ +∝  (16) 

This suggests that the evolution will also tend to an equilibrium-state and steady-sta-
te equation can be written: 
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Figure 1. The relationship between MC and η with different l at a steady-state; (a) in the free molecule 
regime, (b) in the continuum regime 
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With the same derivations, we can get: 
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The results are showed in fig. 1(b), which have the similar varying curves but with 
steeper slope as those in the free molecule regime, especially for a larger l. 

Conclusion 

In this work, the steady-state solutions for particles undergoing Brownian coagula-
tion and breakage are proposed based on TEMOM model. The results imply that the increas-
ing of the number of daughter particles from a breakage event would enhance the dispersity of 
the system, and in the continuum regime, the effect of η on MC is more strengthened than that 
in the free molecule regime. 
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