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To improve the precision of parameters’ estimation in Philip infiltration model, 
chaos gray-coded genetic algorithm was introduced. The optimization algorithm 
made it possible to change from the discrete form of time perturbation function to 
a more flexible continuous form. The software RETC and Hydrus-1D were ap-
plied to estimate the soil physical parameters and referenced cumulative infiltra-
tion for seven different soils in the USDA soil texture triangle. The comparisons 
among Philip infiltration model with different numerical calculation methods 
showed that using optimization technique can increase the Nash and Sutcliffe ef-
ficiency from 0.82 to 0.97, and decrease the percent bias from 14% to 2%. The 
results indicated that using the discrete relationship of time perturbation function 
in Philip infiltration model’s numerical calculation underestimated model’s pa-
rameters, but this problem can be corrected a lot by using optimization algo-
rithm. We acknowledge that in this study the fitting of time perturbation function, 
Chebyshev polynomial with order 20, did not perform perfectly near saturated 
and residue water content. So exploring a more appropriate function for repre-
senting time perturbation function is valuable in the future. 
Key words: Philip infiltration model, gray-encoded genetic algorithm, 

USDA soil texture triangle, Chebyshev polynomial 

Introduction 

The infiltration process happening on the land surface is an important part in hy-
drology, soil physics, environment, and agriculture science. Many empirical, semi-empirical, 
numerical, and approximate analytical models have been developed to stimulate the infiltra-
tion process [1-10]. Finding a simple, robust, efficient, and stable physical infiltration model 
and making it correctly stimulate the interaction between surface and subsurface hydrological 
cycle are the objectives of all the infiltration model studies.  

Richards’ equation (RE) [11] describes the moisture movement in unsaturated po-
rous media, which is the well-known governing function of infiltration and unsaturated flow. 
Most of the physical infiltration models are derived from the RE, which can guarantee the 
physical meaning of different parameters and its measurability. The RE derived infiltration 
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models can not only predict the infiltration process with measurable parameters, but also help 
understand the infiltration process such as the sorption’s role in infiltration process. Philip 
[12-15] presented the first analytical solution from RE and gave a two-term infiltration model, 
i. e., Philip infiltration model (PIM) with corresponding numerical methods. The PIM as-
sumed a time perturbation series around sorption process and strictly defined the sorptivity to 
describe the sorption process. Based on the physical definition presented by Philip, infiltration 
process has become clearer [16]. The early stage of infiltration is controlled by capillary suc-
tion, sometimes it can be approximated by sorption. As time goes by, the gravity plays bigger 
role and the values of the second-term in PIM become larger. 

The infiltration process, soil moisture movement, and soil physical properties are all 
described in complex non-linear relationship, and using optimization algorithm to estimate 
parameters is essential. Because genetic algorithm (GA) is a global optimization algorithm, 
different GA based on genetic evolution of species are universally applied in hydrology, envi-
ronmental and soil science [17-19]. Sometimes, it is difficult for some GA to find the optimi-
zation solutions nearby the boundary of the search space quickly, which means GA would 
need a large amount of computation. To solve these problems, we use chaos gray-coded ge-
netic algorithm (CGGA) proposed by Yang et al. [20] in this study, which combined chaos 
technology to reduce computations and improved the calculation precision in parameters’ es-
timation. 

Although Philip presented detailed numerical methods to calculate his model, PIM 
can be improved by using optimization algorithm. Using efficient computer optimization 
technique could improve the calculation accuracy and applicability of the model. The objec-
tive of this paper is to revisit PIM and introduce optimization algorithm, i. e. (CGGA), into it. 
Note, the application of optimization technique in this paper is different from calibration pro-
cedure in hydrological model which uses observation or other reference data to optimize pa-
rameters.  

Governing equation in unsaturated soil 

The water flow in unsaturated soil is traditionally described by RE, which combines 
the principle of water balance and the Buckingham-Darcy equation [21]. The modified form 
of RE is used widely to deduce the analytical solutions. The 1-D RE for vertical infiltration is 
given below, which describes soil moisture movement in a homogeneous, isotropic and rigid 
porous medium under isothermal conditions: 
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where z [cm]  is the vertical co-ordinate positive downward, z = 0 – the depth at soil surface,  
θ [cm3cm–3] – the volumetric water content, θi – the initial volumetric water content, θ0 – the 
volumetric water content at soil surface, t – the time, K(θ) [cms–1] – the unsaturated hydraulic 
conductivity, and D(θ) [cm2s–1] – the diffusivity. 

The water retention characteristic and unsaturated hydraulic conductivity relation-
ship are calculated by widely used van Genuchten [22] and Mualem [23] models. The van 
Genuchten and Mualem models are written in the following form: 
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where h [cm] is the suction head, θr – residue water content, θs – saturated water content,  
Ks – the saturated hydraulic conductivity, α [cm–1] – the scaling parameter that is inversely pro-
portional to mean pore diameter, n – the soil water characteristic curve index, and m = 1 – 1/n. 

Philip two-term infiltration model 

Philip [5, 12] assumed that infiltration can be described as the time perturbation 
around sorption process, which caused by the effect of gravity. The analytical solutions of 
sorption is got by Boltzmann transformation, and adding the time perturbation series is: 
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where ηi(θ) is the different function of θ, which can be numerically calculated by the iterative 
algorithm provided by Philip [15, 24]. In order to simplify the calculation process, only the 
first two terms in this series are used in infiltration calculation process. 

Introducing eq. (7) into eq. (1) and combing the principle of continuity is the well-
known Philip two-term infiltration model [5]: 
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where S [cms–0.5] is the sorptivity which is equal to 0

i 1( )d ,θ
θ η θ θ∫  Ki is the hydraulic conductiv-

ity at initial water content and A2 [cms–1] is equal to 0

i 2 ( )d .θ
θ η θ θ∫  

Philip introduced the numerical methods [15, 24] to calculate S and A2 with an itera-
tive process. But the numerical methods can only give a discrete relationship of η1(θ), η2(θ). 
Using different numerical integration methods influence the computational accuracy. To get 
the relationship of η2(θ) needs to estimate the derivative of η1(θ) (i. e. dη1(θ)/dθ), and using 
different numerical methods also influence the computational accuracy. In order to improve 
the accuracy of estimation, we used optimization algorithm in the previous two processes. We 
used Philip model (Index 1, Index 2) to represent PIM using different methods. When index 1 
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is Y (or N), it will represent using (or not using) optimization algorithm to fit function η1(θ) in 
sorptivity calculation. When index 2 is Y (or N), it will represent using (or not using) optimi-
zation algorithm to fit function η1(θ) in dη1(θ)/dθ calculation. 

Description of CGGA 

In order to improve the computational precision, function η1(θ) and dη1(θ)/dθ are es-
timated by complex non-linear expressions (i. e. Chebyshev polynomial with order 20 in this 
study). The CGGA is used to reduce the computational amount and improve the accuracy, in 
which chaos mapping is applied to generate initial population and new chaos mutation and 
Hooke-Jeeves evolution operation are used in the subsequent steps. 

We simplify the non-linear optimization problem in this study: 

 
Min[ ( )]
. .     ( )j j

f X
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where X = { x(j), j = 1,…,p}, x(j) is the 
parameter to be optimized, f – the objec-
tive function, and the range of the jth pa-
rameter x(j) – the interval [aj, bj]. The 
details of this algorithm are described 
by Yang et al. [20], the parameters of 
CGGA are all the same with Yang et al. 
[20], and the simplified computational 
procedures are in fig. 1. 

Experiment and data 

The USDA textural triangle and 
the software RETC [25] were used to 
estimate the soil physical parameters of 
van Genuchten model, and the well-
known HYDRUS-1D software [26] was 
applied to numerically stimulate the 1-D 
infiltration process. We did not stimu-
late soils with high sand content, so sev-
en different soils in the USDA textural 
triangle were chosen to calculate in this 
study. Table 1 lists the various parame-
ters of seven corresponding soils. The 
first column shows the soil texture of 
our numerical experiment, and the de-
tailed information of different soil tex-
tures are shown in the next three col-

umns. The van Genuchten model’s parameters were predicted by RETC (bulk density of 1.5 
g/cm3). The last column of tab. 1 shows the total depths of simulated soils. In the HYDRUS-
1D, all the soils were equally divided into one hundred parts with 0.16 as the initial condition 
and the saturation soil water content as the upper boundary value. The simulated time was 5 
hour, and time step was 10 seconds. 

 
Figure 1. Computational procedures of CGGA 
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Table 1. The parameters of seven soils for numerical experiments 

Results and discussion 

The percent bias (PBIAS) and Nash and Sutcliffe efficiency (NSE) [27] index were 
selected to evaluate the performance of PIM with different computational methods. The two 
statistics are calculated: 
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where Yj
ref and Yj

sim are the jth reference and simulated values, Y  – the mean of the reference 
data, and N – the total number. If the NSR > 0.5 and the absolute value of PBIAS is less than 
25%, the model’s performance can be identified as satisfactory [28]. 

Figure 2 shows the comparisons among PIM with different calculation methods and 
referenced cumulative infiltration (i. e., Hydrus 1-D simulation results) of seven chosen soils. 
The reference solutions are plotted in black line with 10 secons time interval. Philip model (Y, 
Y), Philip model (Y, N), Philip model (N, Y), and Philip model (N, N) are plotted in different 
symbols showing in fig. 2 with 50 seconds time interval. 

Results in fig. 2 showed that Philip model (Y, Y) performed best. Philip model  
(Y, N) and Philip model (N, Y) had similar performance and showed different advantages in 
different soils, which indicated two different accuracy improvement methods had different ef-
fect on different soils. The results indicated that if clay content was higher, the infiltration cal-
culated by different methods were closer to the reference data. One possible explanation was 
the sorption process was the major part of infiltration [16] in the researched time scale, which 
means sorptivity took a large part in the infiltration process at least for the chosen soils.  

Table 2 shows the PBIAS and NSE values of PIM with different numerical calcula-
tion methods. The evaluation results showed that optimization algorithm contributed a lot to  
improve the accuracy of PIM, and the Philip model (Y, Y) had the best results in all the  

Soil texture Sand 
[%] 

Silt 
[%] 

Clay 
[%] 

van Genuchten model’s parameters Stimulated  
depth in  

Hydrus-1D [cm] Ks (10–3) θr θs α n 

Silt 7.39 87.38 5.23 0.35394 0.0506 0.4076 0.0071 1.6217 80 

Loam 41.16 40.54 18.30 0.12025 0.0559 0.3759 0.0108 1.4913 60 

Silt loam 21.45 65.29 13.26 0.19954 0.0542 0.3751 0.0058 1.6355 80 

Clay loam 32.50 34.00 33.50 0.06829 0.0793 0.4141 0.0127 1.3960 20 

Silty clay loam 10.00 56.50 33.50 0.06192 0.0846 0.4290 0.0084 1.4873 20 

Silty clay 6.66 46.67 46.67 0.05162 0.0938 0.4485 0.0125 1.3538 15 

Clay 19.57 17.60 62.83 0.09144 0.0968 0.4446 0.0193 1.2180 15 
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Figure 2. Comparisons of PIM with different calculation methods on cumulative infiltration 

researched soils. The traditional numerical method, which was trapezoidal integration in this 
study, made Philip model (N, N) the worst performance. Philip model (Y, N) performed better 
than Philip model (N, Y) for silt, loam, silt loam, and clay loam, which implied that fitting 
function η1(θ) for sorptivity calculation can improve the prediction accuracy of sorptivity. Be-
cause sorption controlled the infiltration process in the researched time scale, the four soils 
had better results with Philip model (Y, N) than Philip model (N, Y). Although sorption was 
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still the major part of the infiltration process for silty clay loam, silty clay, and clay, the sorp-
tivity is so small that it can be influenced by the values of function η2(θ). So Philip model  
(N, Y) had better performance than Philip model (N, Y) for these three soils with high clay 
content. Compared with Philip model (Y, Y) and Philip model (N, N), using optimization tech-
nique can increase NSE from 0.82 to 0.97, and decrease PBIAS from 14% to 2%. 

Table 2. Evaluation results of different soils and methods 

Conclusion 

This study revisited PIM and introduced CGGA into it. The algorithm was used in fit-
ting function η1(θ) and its derivative, which made the function relationship more precise, chan-
ging from discrete form to continuous form. Combining the USDA soil texture triangle, RETC 
and Hydrus-1D, we got the soil physical parameters and referenced cumulative infiltration for 
seven different soils. Using the referenced soil physical parameters and infiltration data, the 
comparisons among PIM with different numerical calculations were made. The comparisons 
showed that Philip model (Y, Y) with optimization algorithm performed best, and Philip model 
(N, N) with trapezoidal integration performed worst. Evaluation results indicated that using 
optimization technique can increase NSE from 0.82 to 0.97, and decrease PBIAS from 14% to 
2%. We could conclude that using the discrete relationship of η1(θ) in Philip model’s numerical 
calculation underestimated the parameters, which could be corrected by optimization algorithm. 
Chebyshev polynomial with order 20 was used as fitting function to fit function η1(θ) in this 
study, but the relationship near saturated and residue water content was not correct, which need 
to explore a more appropriate function for representing function η1(θ) in the future. 
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