DOUBLE STRATIFIED FLOW OF NANOFLUID SUBJECT TO TEMPERATURE BASED THERMAL CONDUCTIVITY AND HEAT SOURCE

by

Tasawar HAYATa,b, Ikram ULLAHa, Ahmed ALSAEDIb,
and Muhammad WAQASa

aDepartment of Mathematics, Quaid-I-Azam University, Islamabad, Pakistan
bNon-linear Analysis and Applied Mathematics (NAAM) Research Group,
Department of Mathematics, Faculty of Science, King Abdulaziz University,
Jeddah, Saudi Arabia

Original scientific paper https://doi.org/10.2298/TSCI180121242H

Stratified hydromagnetic flow of nanomaterial in the zone of stagnation point is addressed. An exponential base space dependent heat source, temperature dependent thermal conductivity and viscous dissipation are accounted. In addition, first order chemical reaction is present. The obtained non-linear system is computed by employing homotopic procedure. Convergent solutions are obtained. Plots and tabulated values are arranged for interpretation of sundry variables. Clearly temperature and concentration distributions are decayed in presence of stratification. Moreover skin friction and temperature are reduced via wall thickness parameter.

Key words: exponential space dependent heat source, double stratification, nanomaterials, variable conductivity

Introduction

A stratified fluid is named as the fluid with density fluctuations in the transverse direction. Density difference emerges through various sources such as pressure difference, temperature difference, and dissolved phases. The characteristics of thermal and solutal stratifications of hydrogen and oxygen in the lakes and rivers are very significant. Occurrence of wave process and smog in air-flow across the mountains are the demonstrations of the influence of stratification in atmosphere. System of thermal storage like solar ponds and heat transfer from thermal sources like condenser of power plant, rivers and seas, heat rejection from environment like lake, geothermal systems, geological transport, thermohydraulic, etc. are few examples of applications of stratification. Having such in view, Bansod and Jadhav [1] addressed double stratification in fluid saturated porous medium. Takhar et al. [2] and Chamkha [3] used different methods to explore the free convection flows. They inspected that stratification parameter reduces the temperature and skin friction. Further they found that buoyancy parameter augments the velocity and it diminishes thermal layer thickness. Double stratification in boundary-layer flow of nanoliquid by a vertical plate is discussed by Ibrahim and Makinde [4]. Hussain et al. [5] inspected the impact of double stratification in MHD mixed convection flow of Maxwell nanofluid. Hayat et al. [6] presented analysis of mixed convection in doubly stratified flow of Oldroyd-B nanofluid.

*Corresponding author, e-mail: ikram020@yahoo.com
Heat transfer liquids have remarkable role in numerous industries such as automotive industry, electronic industries, etc. Therefore, liquids are frequently utilized as heat transport bearer in the heat transfer apparatus. However the conventional fluids (oil, ethylene glycol, water) are poor heat conducting and usually not fulfilling the heat transfer requirement of recent industrial needs. In order to enhance their conductivity, nanometer sized particles are immersed in base fluids to form nanomaterials. By addition of such particles, thermal heat transfer properties of these liquids can be improved. It is worth to mention here that thermal conductivity, particle size, volume fraction, and temperature all participate in advancement of thermal conductivity of nanofluids. The incitement in nanofluid research streams from the heat transfer augmentation in process involving micro-manufacturing, space cooling, microchips in computer processors, fuel cells, nuclear energy, hybrid-powered engines, Diesel engine oil, air refrigerators/air-conditioners and other high energy equipments. The word nanofluid was initially given by Choi [7] which refers to the liquid in which nanometer-sized (less then 100nm) disseminated. He found that addition of very less amount of nanoparticles to traditional heat transfer liquids augmented the thermal conductivity up to two times. This experimental analysis witnessed thermal conductivity enhancement of nanofluid. Buongiorno [8] further constructed a two-phases model to explore the thermal energy transport through nanoliquid. Eastman et al. [9] remarked that a small amount (< 1%, volume fraction) of Cu nanoparticles or CNT immersed in oil or ethylene glycol remarkably boost up the thermal conductivity of a liquid by 50% and 40%, respectively. Thus nanomaterials are recognized more significant in micro/nanoelectromechanical devices, large-scale thermal management systems through evaporators, advance cooling systems, industrial cooling applications and heat exchangers. Some other related studies of nanofluids can be seen via [10-22]. Further the magnetonanofluids (also known as ferrofluid) are special kind of materials which are suspensions of magnetic nanoparticles like magnetite, cobalt ferrite, hematite or some other compound consisting of iron in ordinary base fluid. These particles are more useful in the sense that their physical characteristics are more tunable through the external magnetic field. Also it is worth to noted that in the absence of magnetic field these fluids behave as normal fluids. Magnetonanofluids are profitable to guide the particles up the blood stream to a tumor with magnets. It is because that magnetic nanoparticles are regarded more adhesive to tumor cells when compared with non-malignant cells. Such particles absorb more power than microparticles in alternating current magnetic fields tolerable in humans. Hyperthermia, contrast enhancement in magnetic resonance imaging, magnetic cells separation, and delivery are process where magnetonanofluids involve. In view of such applications many scientists and engineers have interest in investigations of ferrofluids through various aspects. Stretched flow of heated ferrofluid in presence of a magnetic dipole is investigated by Andersson and Valnes [23]. Selimefendigil et al. [24] analyzed forced convection flow of ferrofluid. Rotating flow of magnetite water nanoliquid over a radiative stretching sheet is studied by Mustafa et al. [25]. Hayat et al. [26] examined the partial slip in flow of magnetite- Fe₂O₃ nanoparticles between rotating stretchable disks. The MHD 3-D flow of second grade nanofluid is addressed by Hayat et al. [27]. Sheikholeslami et al. [28] explained external magnetic field effect in force convection flow of nanofluid.

Present work aimed to examined combined effects of double stratification and chemical reaction in stagnation point flow of Williamson nanofluid with variable thermal conductivity. Non-linear stretching sheet of variable thickness generates the flow. Incompressible electrically conducted fluid is considered with uniform applied magnetic filed. Thermal properties of fluid are examined with viscous dissipation, Brownian motion, exponential based heat source and thermophoresis. Boundary-layer approach develops the relevant mathematical formulation.
Obtained system of equations is solved through homotopic algorithm [29-42]. Physical quantities of interest are analyzed in detail.

Mathematical development

Here we consider stagnation point flow of Williamson nanoliquid towards non-linear stretching sheet of variable thickness characterized by $y = \delta(x + b)$. Here δ characterizes that sheet is sufficiently thin. Stretching velocity of sheet is denoted by $U_e = U_0(x+b)^n$. Note that $n = 1$ corresponds to case linear stretching. A uniform magnetic field with strength B_0 is applied in transverse direction the flow. Stratification phenomenon for both heat and mass transfer are addressed. Flow analysis comprises Brownian diffusion and thermophoresis effects. Energy expression is characterize through viscous dissipation and exponential space dependent heat source. Moreover first order chemical reaction are considered. The boundary-layer problems satisfy [43-46]:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{1}
\]

\[
u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \nu \frac{\partial^2 u}{\partial y^2} + 2\nu \Gamma \frac{\partial u}{\partial y} \frac{\partial^2 u}{\partial y^2} + U_e \frac{\partial U_e}{\partial x} + \frac{\sigma B_0^2}{\rho} (U_e - u) \tag{2}
\]

\[
u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{1}{(\rho c)_f} \frac{\partial}{\partial y} \left[k(T) \frac{\partial^2 T}{\partial y^2} \right] + \frac{(\rho c)_f}{(\rho c)_f} \left[D_B \frac{\partial T}{\partial y} + \frac{D_T}{T_\infty} \left(\frac{\partial T}{\partial y} \right)^2 \right] + \\
+ \frac{\mu_0}{(\rho c)_f} \left(\frac{\partial u}{\partial y} \right)^2 + \frac{\mu_0}{(\rho c)_f} \Gamma \left(\frac{\partial u}{\partial y} \right)^3 + \frac{Q_0(T - T_\infty)}{(\rho c)_f} e^{-n_\delta} \tag{3}
\]

\[
u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D_B \frac{\partial^2 C}{\partial y^2} + \frac{D_T}{T_\infty} \frac{\partial^2 T}{\partial y^2} - k_1(C_w - C_x) \tag{4}
\]

\[
u \rightarrow U_e = U_0(x+b)^n, \quad v = 0, \quad T = T_c = T_0 + d_1(b+x) \quad C = C_w = C_0 + d_2(b+x) \quad \text{at} \quad y = \delta(b+x)^n \tag{5}
\]

\[
u \rightarrow U_e = U_0(x+b)^n, \quad T \rightarrow T_\infty = T_0 + e_1(b+x), \quad C \rightarrow C_\infty = C_0 + e_2(b+x) \quad \text{as} \quad y \rightarrow \infty \tag{6}
\]

In previous equations the respective velocity components along (x, y) directions are represented by (u, v), $\nu = \mu_0/\rho$, the kinematic viscosity, b, d_1, d_2, e_1, and e_2 are the dimensional constants, Q_0 – the heat source parameter, μ_0 – the dynamic viscosity, n_1 – the exponential index, ρ_1 – the base liquid density, U_e – the free stream velocity, Γ – the time constant, n – the velocity power index, σ – the electrical conductivity, T – the temperature, T_0 – the reference temperature, $(\rho c)_f$ – the heat capacity of liquid, $(\rho c)_p$ – the nanoparticles effective heat capacity, k_1 – the chemical reaction rate, D_B – the diffusion coefficient, C_0 – the reference concentration, C – the concentration, D_T – the coefficient of thermophoretic diffusion, T_∞ and C_∞ the ambient liquid temperature and concentration, respectively and U_0 the reference velocity. Consider the variable thermal conductivity in the form [47]:

\[
k(T) = k_0 \left[1 + e \frac{T - T_\infty}{\Delta T} \right] \tag{7}
\]
where $\Delta T = T_w - T_0$ and k_∞ is the ambient conductivity. With the help of the following transformations:

$$
\eta = \sqrt{\frac{n+1}{2}} \frac{U_0(x+b)^{n+1-1}}{V} \Theta(\eta) = \frac{T-T_w}{T_w-T_0}, \quad \Phi(\eta) = \frac{C-C_w}{C_w-C_0}
$$

(8)
equation (1) is trivially verified while eqs. (2)-(7) yield:

$$
F''' + FF' = \frac{2n}{n+1} F'' + \text{We} \left[\frac{n+1}{2} F'' + \left(\frac{2}{n+1} \right) M^2 (\lambda - F') + \left(\frac{2n}{n+1} \right)^2 \right] = 0
$$

(9)

$$
(1+\varepsilon\Theta)\Theta' + \varepsilon\Theta' + \text{Pr} \left[F\Theta' + N\Theta\Phi' + N\Theta^2 - \frac{2}{n+1} (\varepsilon_1 + \Theta F') \right] + \text{We Pr Ec F''} + \text{Pr Ec F''} + \left(\frac{2}{n+1} \right) \exp(-n_1 \xi) \Theta = 0
$$

(10)

$$
\Phi'' + \text{Sc} \left[F\Phi' - \frac{2}{n+1} \varepsilon_2 F' \right] + \left(\frac{N}{Nb} \right) \Theta' - \left(\frac{2}{n+1} \right)^2 \gamma \Phi = 0
$$

(11)

$$
F(\alpha) = \alpha \left(\frac{1-n}{1+n} \right), \quad F' = 1, \quad F'(\infty) = \lambda
$$

$$
\Theta(\alpha) = 1 - \varepsilon_1, \quad \Theta(\infty) = 0
$$

$$
\Phi(\alpha) = 1 - \varepsilon_2, \quad \Phi(\infty) = 0
$$

(12)

In previous expressions prime signifies derivative with respect to η and

$$
\alpha = \delta \sqrt{\frac{n+1}{2}} \frac{U_0}{V}
$$

designates wall thickness parameter and

$$
\alpha = \eta = \delta \sqrt{\frac{n+1}{2}} \frac{U_0}{V}
$$

Considering the following expression $F(\eta) = f(\eta - \alpha) = f(\xi)$, $\Theta(\eta) = \Theta(\eta - \alpha) = \Theta(\xi)$, and $\Phi(\eta - \alpha) = \Phi(\eta - \alpha) = \Phi(\xi)$, eqs. (9)-(12) become:

$$
F''' + F'F = \frac{2n}{n+1} F'' + \text{We} \left[\frac{n+1}{2} F'' + \left(\frac{2n}{n+1} \right) M^2 (\lambda - F') + \left(\frac{2n}{n+1} \right)^2 \right] = 0
$$

(13)

$$
(1+\varepsilon\Theta)\Theta' + \varepsilon\Theta' + \text{Pr} \left[F\Theta' + N\Theta\Phi' + N\Theta^2 - \frac{2}{n+1} (\varepsilon_1 + \Theta F') \right] + \text{We Pr Ec F''} + \text{Pr Ec F''} + \left(\frac{2}{n+1} \right) \exp(-n_1 \xi) \Theta = 0
$$

(14)
\[
\phi'' + \text{Sc} \left(f' - \frac{2}{n+1} \phi' \right) + \left(\frac{Nt}{Nb} \right) \theta'' - \frac{2}{n+1} \text{Sc} \gamma \phi = 0
\]
(15)

\[
f(0) = \alpha \left(\frac{1-n}{1+n} \right), \quad f'(0) = 1, \quad f'(\infty) \to \lambda^*
\]
\[
\theta(0) = 1 - \epsilon_1, \quad \theta(\infty) \to 0
\]
\[
\phi(0) = 1 - \epsilon_2, \quad \phi(\infty) \to 0
\]
(16)

where \(\text{We} \) is the Weissenberg number, \(Q \) – the exponential space based heat source (ESHS) parameter, \(\text{Ec} \) – the Eckert number, \(\text{Pr} \) – the Prandtl number, \(\lambda \) – the for the ratio of velocities, \(M \) – the magnetic parameter, \(Nt \) – the thermophoresis parameter, \(Nb \) – the Brownian motion parameter, \(\gamma_1 \) – the for chemical reaction, \(\text{Sc} \) – the for Schmidt number, \(\epsilon_1 \) – the for thermal stratified parameter, \(\epsilon \) – the for variable thermal conductivity, and \(\epsilon_2 \) – the solutal stratified parameter. The non-dimensional quantities are defined:

\[
\text{We} = \Gamma \sqrt{\frac{(n+1)U_0^2(x+b)^{n-1}}{\nu}}, \quad \lambda = \frac{U_x}{U_0}, \quad \text{Ec} = \frac{U_w^2}{c_p(T_w-T_0)}, \quad \text{Pr} = \frac{\mu c_p}{k_w}
\]

\[
\epsilon_1 = \frac{\epsilon_1}{d_1}, \quad \epsilon_2 = \frac{\epsilon_2}{d_2}, \quad \gamma_1 = \frac{k_1}{U_0(x+b)^{n-1}}, \quad M^2 = \frac{\sigma B_0^2}{\rho U_0(x+b)^{n-1}}
\]
(17)

\[
Q = \frac{Q_0}{(\rho c_f)U_0(x+b)^{n-1}}, \quad \text{Sc} = \frac{\nu}{D_g}, \quad Nt = \frac{(\rho c_p)D_g(C_w-C_0)}{\nu}, \quad Nb = \frac{(\rho c_f)D_g(T_w-T_0)}{T_w^2}
\]

Expressions of skin friction and rates of heat and mass transfer rates at the surface:

\[
C_{f,x} = \frac{T_{yx} |_{y=\delta(x+b)}}{1/2 \rho U_w^2} = \left[\frac{\mu_0 \left(\frac{\partial u}{\partial y} \right) + \Gamma \left(\frac{\partial u}{\partial y} \right)}{2 \rho U_w^2} \right]_{y=\delta(x+b)}
\]
(18)

\[
\text{Nu}_x = \frac{(x+b)q_w \mid_{y=\delta(x+b)}}{k_x(T_w-T_x)} = -\frac{\left(\frac{\partial T}{\partial y} \right)_{y=\delta(x+b)}}{T_w-T_x}
\]

\[
\text{Sh}_x = \frac{(x+b)q_m \mid_{y=\delta(x+b)}}{D_g(C_w-C_0)} = -\frac{\left(\frac{\partial C}{\partial y} \right)_{y=\delta(x+b)}}{C_w-C_0}
\]
(19)

In dimensionless form we have:

\[
(\text{Re}_x)^{0.5} C_{f,x} = \sqrt{\frac{(n+1)}{2} f''(0) + \left(\frac{n+1}{4} \right) \text{We} f''^2(0)}
\]
(20)
\[(\text{Re}_x)^{-0.5} \text{Nu}_x = - \sqrt{\frac{n+1}{2}} \theta'(0)\] (22)

\[(\text{Re}_x)^{-0.5} \text{Sh}_x = - \sqrt{\frac{n+1}{2}} \phi'(0)\] (23)

where \(\text{Re}_x = U_c(b + \chi)/\nu\) depicts the local Reynolds number.

Homotopic solutions and convergence analysis

The initial approximations \((f_0, \theta_0, \phi_0)\) and linear operators \((\bar{L}_f, \bar{L}_\theta, \bar{L}_\phi)\) are defined:

\[f_0(\xi) = \alpha \left(\frac{1-n}{1+n}\right) + (1-\lambda)\left(1-e^{-\xi}\right) + \lambda \xi\]

\[\theta_0(\xi) = (1-\epsilon_1)e^{-\xi}\]

\[\phi_0(\xi) = (1-\epsilon_2)e^{-\xi}\] (24)

with

\[\bar{L}_f\left[\beta_1^{**}, \beta_2^{**}e^\xi + \beta_3^{**}e^{-\xi}\right] = 0\]

\[\bar{L}_\theta\left[\beta_1^{**}e^\xi + \beta_2^{**}e^{-\xi}\right] = 0\]

\[\bar{L}_\phi\left[\beta_1^{**}e^\xi + \beta_2^{**}e^{-\xi}\right] = 0\] (25)

in which \(\beta_j^{**}(j = 1-7)\) depict the arbitrary constants:

\[f_0(0, \bar{\rho}) = f_0(1, \bar{\rho}) = \frac{1-n}{1+n}, \quad f_0'(0, \bar{\rho}) = 1, \quad f_0'(\infty, \bar{\rho}) = 0\]

\[\theta_0(0, \bar{\rho}) = (1-\epsilon_1), \quad \theta_0(\infty, \bar{\rho}) = 0\]

\[\phi_0(0, \bar{\rho}) = (1-\epsilon_2), \quad \phi_0(\infty, \bar{\rho}) = 0\]

\[
N_f\left[\hat{f}(\xi, \bar{\rho})\right] = \frac{\partial^3 \hat{f}}{\partial \xi^3} + \frac{\partial^2 \hat{f}}{\partial \xi^2} \hat{f} - \frac{2n}{n+1} \left(\frac{\partial \hat{f}}{\partial \xi}\right)^2 + \text{We} \sqrt{\frac{n+1}{2}} \frac{\partial^2 \hat{f}}{\partial \xi^2} \frac{\partial^3 \hat{f}}{\partial \xi^3} + \frac{2}{n+1} M^2 \left(\lambda - \frac{\partial \hat{f}}{\partial \xi}\right) + \frac{2n}{n+1} \lambda^2\] (30)
\[
N_{\phi} \left[\hat{\theta}(\xi, \hat{p}), \phi(\xi, \hat{p}), \hat{f}(\xi, \hat{p}) \right] = \left(1 + \epsilon \hat{\theta} \right) \frac{\partial^2 \hat{\theta}}{\partial \xi^2} + \epsilon \hat{\theta}^* + \Pr \hat{\theta} + \Pr \hat{\phi} \frac{\partial \hat{\phi}}{\partial \xi} + \Pr \hat{\phi} \frac{\partial \hat{\phi}}{\partial \xi^2} + \Pr \hat{f} \frac{\partial \hat{f}}{\partial \xi} + \Pr \hat{f} \frac{\partial \hat{f}}{\partial \xi^2} + \Pr \hat{\phi} \frac{\partial \hat{\phi}}{\partial \xi} + \Pr \hat{\phi} \frac{\partial \hat{\phi}}{\partial \xi^2} + \\
+ \Pr \frac{2}{n+1} (\epsilon_1 + \hat{\theta}^* \frac{\partial \hat{f}}{\partial \xi} + \We \Pr \Ec \frac{\partial \hat{f}}{\partial \xi} + \Pr \Ec \frac{\partial \hat{f}}{\partial \xi} + \frac{2}{n+1} \Pr \exp(-n_\xi) \hat{\theta})
\]

(31)

\[
\begin{align*}
N_{\phi} \frac{\partial \hat{\phi}(\xi, \hat{p}), \partial \hat{\theta}(\xi, \hat{p}), \partial \hat{f}(\xi, \hat{p})]}{\partial \xi} & = \frac{\partial^2 \hat{\phi}}{\partial \xi^2} + \Sc \frac{\partial \hat{\phi}}{\partial \xi} + \frac{Nt \frac{\partial^2 \hat{\theta}}{\partial \xi^2}}{Nb} \\
& - \Sc \epsilon_2 \frac{\partial \hat{f}}{\partial \xi} - \frac{2}{n+1} \Sc \gamma \phi
\end{align*}
\]

(32)

\[
\begin{align*}
\mathbf{L}_f \left[f_m(\xi) - \chi_m f_m(\xi) \right] & = h_f R_f^{\xi}(\xi) \\
\mathbf{L}_\theta \left[\theta_m(\xi) - \chi_m \theta_m(\xi) \right] & = h_\theta R_\theta^{\xi}(\xi) \\
\mathbf{L}_\phi \left[\phi_m(\xi) - \chi_m \phi_m(\xi) \right] & = h_\phi R_\phi^{\xi}(\xi)
\end{align*}
\]

(33)

(34)

(35)

\[
\begin{align*}
f_m(0) & = f_m'(0) = f_m'(\infty) = 0, \quad \theta_m(0) = 0, \\
\theta_m(x) & = 0, \quad \phi_m(0) = 0, \quad \phi_m(x) = 0
\end{align*}
\]

(36)

\[
R_m^{\xi}(\xi) = f_m^{\prime \prime}(\xi) + \sum_{k=0}^{m-1} f_{m-1-k} f_k^{\prime \prime} + \frac{2n}{n+1} \sum_{k=0}^{m-1} f_{m-1-k} f_k^{\prime} + \\
+ \We \sqrt{\frac{n+1}{2} \sum_{k=0}^{m-1} f_{m-1-k} f_k^{\prime \prime}} - \frac{2n}{n+1} \sum_{k=0}^{m-1} f_{m-1-k} f_k^{\prime} + \\
+ \Pr \frac{Nt}{\epsilon_1} \sum_{k=0}^{m-1} \theta_{m-1-k}^{\prime} - \frac{2n}{n+1} \Pr \epsilon_1 \sum_{k=0}^{m-1} f_{m-1-k} \theta_k + \\
+ \We \Pr \Ec f_m^{\prime \prime}(\xi) \sum_{k=0}^{m-1} f_{m-1-k} f_k^{\prime \prime} + \Pr \Ec \sum_{k=0}^{m-1} f_{m-1-k} f_k^{\prime \prime} + \frac{2n}{n+1} \Pr \exp(-n_\xi) \theta_m(\xi)
\]

(37)

\[
R_m^{\phi}(\xi) = \phi_m^{\prime \prime}(\xi) + \Sc \sum_{k=0}^{m-1} f_{m-1-k} \phi_k^{\prime} + \left(\frac{Nt}{Nb} \right) \theta_m^{\prime \prime}(\xi) - \frac{2n}{n+1} \epsilon_2 f_m^{\prime \prime}(\xi) - \frac{2}{n+1} \Sc \gamma \phi_m(\xi)
\]

(38)

\[
\chi_m = \begin{cases}
0, & m \leq 1 \\
1, & m > 1
\end{cases}
\]

(40)

The general solutions, \(f_m(\xi) \), \(\theta_m(\xi) \), \(\phi_m(\xi) \), of the governing in the form of special solutions, \(f_m^{\prime}(\xi) \), \(\theta_m(\xi) \), \(\phi_m(\xi) \):
\[f_{\alpha}(\xi) = f_{\alpha}^* + \beta_{\alpha}^* \xi + \beta_{\alpha}^* \xi^2 \]
\[\theta_{\alpha}(\xi) = \theta_{\alpha}^* + \beta_{\theta}^* \xi + \beta_{\theta}^* \xi^2 \]
\[\phi_{\alpha}(\xi) = \phi_{\alpha}^* + \beta_{\phi}^* \xi + \beta_{\phi}^* \xi^2 \]

(41)
(42)
(43)

Obviously homotopic procedure for local similar solutions involves embedding variables which gives the flexibility to enlarge the convergence region. Thus \(h \)-curves are displayed which enable us to find the acceptable values of \(h_1, h_2, \) and \(h_3 \), figs. 1 and 2. Allowed ranges of \(h_1, h_2, \) and \(h_3 \) are \([-1.10 \leq h_1 \leq -2.00], [-0.40 \leq h_2 \leq -1.40], \) and \([-0.50 \leq h_3 \leq -1.63]. \) Further homotropy analysis method solutions converge when \(h_1 = -5.0 = h_2 \) and \(h_3 = -0.6 \), see tab. 1.

Table 1. Convergence of solutions when \(Ec = Nb = We, Q = M = a = 0.2 = n = \lambda = \varepsilon = \varepsilon_1 = \varepsilon_2 = Nt = \gamma_1, \) and \(Pr = 1.0 = Sc \)

<table>
<thead>
<tr>
<th>Order of estimations</th>
<th>(-f''(0))</th>
<th>(\theta'(0))</th>
<th>(\phi'(0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.88582</td>
<td>0.88582</td>
<td>0.75752</td>
</tr>
<tr>
<td>10</td>
<td>1.21754</td>
<td>1.21754</td>
<td>0.65816</td>
</tr>
<tr>
<td>15</td>
<td>1.28024</td>
<td>1.28024</td>
<td>0.64700</td>
</tr>
<tr>
<td>20</td>
<td>1.32201</td>
<td>1.32201</td>
<td>0.64057</td>
</tr>
<tr>
<td>25</td>
<td>1.33218</td>
<td>1.33218</td>
<td>0.63923</td>
</tr>
<tr>
<td>30</td>
<td>1.33218</td>
<td>1.33218</td>
<td>0.63912</td>
</tr>
<tr>
<td>40</td>
<td>1.33218</td>
<td>1.33218</td>
<td>0.63911</td>
</tr>
</tbody>
</table>

Discussion

The transformed problems defined in eqs. (13)-(16) is solved analytically via homotopic technique. Influence of some sundry variables like Weissenberg number, velocities ratio parameter, \(\lambda \), (ESHS) parameter, \(Q \), magnetic parameter, \(M \), variable thermal conductivity parameter, \(\varepsilon \), velocity power index, \(n \), Prandtl number, thermophoresis parameter, \(Nt \), Eckert number, Brownian motion parameter, \(Nb \), thermal stratified parameter, \(\varepsilon_1 \), solutal stratified parameter, \(\varepsilon_2 \), Schmidt number, chemical reaction, \(\gamma_1 \), and wall thickness parame-
ter, α, velocity, temperature, concentration, local Nusselt and Sherwood numbers. For such intention figs. 3-22 have been interpreted. The role of wall thickness parameter α on $f'(\xi)$ is depicted in figs. 3 and 4. It is noted here that $f'(\xi)$ near the plate decays as α increases for $n > 1$, see fig. 3, and opposite trend is seen for $n < 1$, see fig. 4. Graphical presentation for velocity field as a function of n is elucidated through fig. 5. It appears that larger n cause to enhanced stretching velocity which accelerates the fluid motion and consequently the fluid velocity increases. Thickness of momentum layer becomes thin as n increases. Impact of We on $f'(\xi)$ is presented in fig. 6. In physical sense, We increases the fluid thickness and consequently velocity profile $f'(\xi)$ decays. Behavior of λ on $f'(\xi)$ is disclosed via fig. 7. It is examined that velocity enhances with increment in λ. Thickness of momentum layer increases for $A < 1$. Here stretching velocity dominates the free stream velocity. Variation in θ via ε is examined in fig. 8. Here increment in ε boosts up liquid temperature significantly. Figure 9 is portrayed to see the changes in Nt for θ. It is noticed that when we strengthen Nt from $Nt = 0.2$ to $Nt = 0.1$, it sharply rises θ and thermal layer thickness. More precisely we can say that thermophoresis force has the property that nanoparticles near the hot surface are being pushed towards the cold region at the boundary. Thus in presence of Nt one can expects thermal layer to become thicker. Feature of Pr on θ is portrayed in fig. 10. Reduction in θ is noticed for higher Pr. By increasing Pr the thermal diffusivity diminishes because heat rapidly transfers that causes a drop in temperature distribution. Analysis for behavior of Ec is depicted in fig. 11. It is concluded that θ is an increasing function of Ec. Physically frictional heating is associated with higher Ec thus have θ increases. Effects of wall thickness parameter α on θ is illustrated in fig. 12. It is concluded that θ is decaying function of α. In fact significant amount of heat transferred from surface to fluid when α is incrimented. Figure 13 displays characteristics of ε_1 on θ. Clearly
\(\theta(\xi) \) reduces for larger thermal stratification parameter. It is because of the fact that temperature difference slowly decays between the sheet and ambient liquid. Temperature is an increasing function of \(Q \), see fig. 14. Influence of \(Nt \) on \(\theta(\xi) \) is drawn in fig. 15. Here \(\theta(\xi) \) is higher for \(Nt \).

Salient feature of \(Nb \) on nanoparticles concentration \(\phi(\xi) \) is declared in fig. 16. For larger \(Nb \) a decreasing trend of \(\phi(\xi) \) is noticed. Concentration distribution is reduced via \(Sc \), see fig. 17. Figure 18 shows effects of \(Ec \) on \(\theta(\xi) \). It is revealed that \(\phi(\xi) \) decreases via \(Ec \). This is due to small difference of surface and ambient concentration. Role of \(\gamma_1 \) on \(\phi(\xi) \) is captured in fig. 19. Clearly stronger \(\gamma_1 \) lead to reduce \(\phi(\xi) \) and solutal boundary-layer thickness. Figure 20 shows \(Nb \) and \(Nt \) variations for Nusselt number. It is found that heat transfer rate diminishes for larger \(Nb \) while it increases via \(Nt \). Figure 21 shows that Nusselt number for higher \(M \) while reverse is seen for
larger n. It is noticed that Nusselt number increases with increasing M. Variations of n and Sc on Sherwood number ($Sh \times Re^{-0.5}$) are portrayed in fig. 22. Clearly $Sh \times Re^{-0.5}$ boosts up for higher values of Sc and n. Numerical data of $-f''(0)$, $\theta'(0)$, and $\phi'(0)$ for various order of estimations are demonstrated in tab. 1 when $Q = M = \alpha = 0.2 = \lambda = \varepsilon = \gamma$, $Ec = Nb = 0.5 = We$, $Pr = 1.0 = Sc$, and $h_x = h_y = -0.4 = h_{\phi}$. It is depicted that 30th order of estimations are enough for convergence of homotopic solutions. Numerical results of skin friction coefficient $-(Re)^{1/2}C_f$ for various values of λ, We, M, n, and α are presented in tab. 2. Here skin friction coefficient is enhanced via λ, We, M, n, and α.

![Figure 13. Impact of $\theta(\xi)$ via ε_1](image_url)

![Figure 14. Impact of $\theta(\xi)$ via Q](image_url)

![Figure 15. Impact of $\phi(\xi)$ via Nt](image_url)

![Figure 16. Impact of $\phi(\xi)$ via Nb](image_url)

![Figure 17. Impact of $\phi(\xi)$ via Sc](image_url)

![Figure 18. Impact of $\phi(\xi)$ via ε_2](image_url)
Table 2. Computation for numerical data of surface drag force −(Re)^{1/2} C_{f} for distinct values of We, M, n, λ, and α

<table>
<thead>
<tr>
<th>Parameters (fixed values)</th>
<th>Parameters</th>
<th>−(Re)^{1/2} C_{f}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q = α = 0.2 = n = λ = ε = ε₁ = ε₂ = Nt = γ₁</td>
<td>M</td>
<td>0.0</td>
</tr>
<tr>
<td>Ec = Nb = 0.5 = We, Pr = 1.0 = Sc</td>
<td>0.3</td>
<td>0.946343</td>
</tr>
<tr>
<td>Q = M = α = 0.2 = n = λ = ε = ε₁ = ε₂ = Nt = γ₁</td>
<td>We</td>
<td>0.6</td>
</tr>
<tr>
<td>Ec = Nb = 0.5 = We, Pr = 1.0 = Sc</td>
<td>0.4</td>
<td>1.245294</td>
</tr>
<tr>
<td>Q = M = α = 0.2 = n = λ = ε = ε₁ = ε₂ = Nt = γ₁</td>
<td>n</td>
<td>0.8</td>
</tr>
<tr>
<td>Ec = Nb = 0.5 = We, Pr = 1.0 = Sc</td>
<td>0.5</td>
<td>0.865803</td>
</tr>
<tr>
<td>Q = M = α = 0.2 = n = λ = ε = ε₁ = ε₂ = Nt = γ₁</td>
<td>α</td>
<td>1.0</td>
</tr>
<tr>
<td>Ec = Nb = 0.5 = We, Pr = 1.0 = Sc</td>
<td>1.5</td>
<td>0.975210</td>
</tr>
<tr>
<td>Q = M = α = 0.2 = n = λ = ε = ε₁ = ε₂ = Nt = γ₁</td>
<td>λ</td>
<td>0.2</td>
</tr>
<tr>
<td>Ec = Nb = 0.5 = We, Pr = 1.0 = Sc</td>
<td>0.6</td>
<td>0.938785</td>
</tr>
<tr>
<td>Q = M = α = 0.2 = n = λ = ε = ε₁ = ε₂ = Nt = γ₁</td>
<td>0.8</td>
<td>0.928758</td>
</tr>
<tr>
<td>Ec = Nb = 0.5 = We, Pr = 1.0 = Sc</td>
<td>0.8</td>
<td>0.930158</td>
</tr>
<tr>
<td>Q = M = α = 0.2 = n = λ = ε = ε₁ = ε₂ = Nt = γ₁</td>
<td>0.5</td>
<td>0.887362</td>
</tr>
<tr>
<td>Ec = Nb = 0.5 = We, Pr = 1.0 = Sc</td>
<td>0.8</td>
<td>0.125043</td>
</tr>
</tbody>
</table>
Conclusions

Main observations of carried out analysis are outlined as follows.

- Wall thickness parameter α decreases both velocity and temperature.
- Increment in Weissenberg number reduces the velocity field.
- Both ε_1 and ε_2 have similar effects on temperature and concentration.
- Higher values of ε augment fluid temperature.
- Temperature and concentration show increasing behavior when Nt is enhanced.
- Skin friction reduces for higher n.
- Features of Nt and Nb on Nusselt number are quite reverse.

Nomenclature

$\text{b}, \text{d}_1, \text{d}_2, \text{e}_1, \text{e}_2$ – dimensional constants
C_f – skin friction
C_r, C_w – nanoparticles and wall concentrations
C_{f1}, C_{f0} – ambient and reference concentrations
D_{b1}, D_{b2} – coefficients of Brownian and thermophoretic diffusion
Ec – Eckert number
F, f' – dimensionless velocities
k_c – ambient thermal conductivity
M – magnetic parameter
Nb – Brownian motion parameter
Nt – thermonpherasis parameter
Nu – Nusselt number
n – velocity power index
n_1 – exponential index
Pr – Prandtl number
Q – the ESHS parameter
Q_h – heat source parameter
Re_c – local Reynolds number
Sc – Schmidt number
Sh_r – Sherwood number
T_w, T – wall and liquid temperatures
T_{w1}, T_{w2} – ambient and reference temperatures

Greek symbols

α – wall thickness parameter
Γ – time constant
γ_1 – chemical reaction parameter
δ – small parameter regarding the surface sufficiently thin
ε – variable thermal conductivity parameter
$\varepsilon_1, \varepsilon_2$ – thermal and solutal stratified parameters
Θ, θ – dimensionless temperatures
λ – ratio of velocities
μ_0 – dynamic viscosity
ν – kinematic viscosity
ρ – fluid density
ε_{pc} – nanoparticles effective capacity
ε_{pc0} – heat capacity of liquid
σ – electrical conductivity
Φ, ϕ – dimensionless concentrations

References

