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The steady boundary-layer flow of a nanofluid past a moving semi-infinite flat plate 
in a uniform free stream in the presence of second order slip is studied using a 
second order slip flow model. The governing PDE are transformed into non-linear 
ODE by using appropriate similarity transformations, which are then solved nu-
merically using bvp4c solver for different values of selected parameters. We found 
that the solutions existed for dual in a certain range of velocity ratio parameter. 
Therefore, a stability analysis has been analyzed to show which solutions are sta-
ble. The effects of velocity ratio parameter, Lewis number, Prandtl number, Brown-
ian motion parameter, thermopherosis parameter, mass suction, first order slip 
parameter, and second order slip parameter on the skin friction coefficient, heat 
transfer coefficient, dimensionless velocity, temperature as well as nanoparticle 
volume fraction profiles are figured out graphically and discussed. These results 
reveals that the slip parameters expand the range of the solutions obtained. The 
increment of slip parameters lead to decrease the skin friction coefficient while in-
crease the heat transfer coefficient. In addition, the value of Lewis nmber, Prandtl 
number, Brownian motion parameter, and thermopherosis parameter are signifi-
cantly affected the heat transfer coefficient. Lastly, the first solution is stable and 
physically relevant, while the second solution is not.
Key words: stability solution, moving surface, nanofluid, second-order slip, 

bvp4c, Brownian motion, thermophoresis, Lewis number,  
Prandtl number

Introduction 

The second order slip flow model was first introduced by Wu [1] and state that the 
improved slip model is derived from kinetic theory. Fang et al. [2] has used the proposed model 
[1] to solve the flow field past a shrinking sheet analytically. Then, Fang and Aziz [3] had ex-
tended the work into stretching sheet with presence of mass suction. Rosca and Pop [4] investi-
gated the steady flow and heat transfer over a vertical permeable stretching/shrinking sheet and 
found that the characteristics of the flow are strongly influenced by the mixed convection, mass 
transfer and the slip flow model parameters. Rosca and Pop [5] studied the flow near stagnation 
point past a flat plate vertically with second order slip flow. Mabood and Das [6] discussed the 
slip effects on the boundary-layer flow of a nanofluid over a stretching sheet in the presence of 

* Corresponding author, e-mail: najwamohdnajib@ymail.com



Najib, N., et al.: Dual Solutions on Boundary-Layer Flow over a Moving ... 
1118	 THERMAL SCIENCE: Year 2020, Vol. 24, No. 2B pp. 1117-1129

melting heat transfer and thermal radiation. The study on effect of mass transfer induced slip at 
a moving surface on gas-flows past a stretching/shrinking sheet was done by Wu [7]. Sharma 
and Ishak [8] considered the second order slip effects over a stretching sheet in Cu-water based 
nanofluid. 

The multiple solutions (dual or more) of boundary-layer flow have been found in each 
study over past several years. The method of finding dual solutions and analyzing the stability 
of the solutions is importance in field of engineering, it is due to verify that which solution is 
a steady-state and physically relevant. Merkin [9] was among the first who made the analysis 
to test the stability flow. Then, Weidman et al. [10] considered the transpiration effects on 
boundary-layer flow over moving surfaces. Merill et al. [11] investigated the mixed convection 
boundary-layer flow near stagnation point on a vertical surface embedded in a porous medium. 
Ishak [12] and Noor et al. [13] studied the stability analysis on the boundary-layer flow past 
a shrinking sheet in viscous fluid and nanofluid, respectively. Nazar et al. [14] has done the 
analysis on 3-D flow over a permeable shrinking surface in Cu-water nanofluid. Noor et al. 
[15] again considered the flow in nanofluid past a permeable moving plate. Hafidzuddin et al. 
[16] has done the work on unsteady 3-D viscous flow over a stretching/shrinking surface. Very 
recently, Yasin et al. [17] have implemented the stability analysis in their study on MHD flow 
with effects of viscous dissipation, Joule heating and partial velocity slip. 

Apart from that, the problem of boundary-layer flow over a moving surface has been 
considered first by Blasius [18] in 1908. Klemp and Acrivos [19] studied the reverse flow 
over a moving wall. After that, Husaini et al. [20] proposed the same problems over a moving 
surface but under different observations. Fang [21, 22] discussed the similarity solutions on 
heat and mass transfer, respectively for a moving flat surface in boundary-layer flow. Again, 
Fang and Lee [23] presented and solved numerically a flow of a slightly rarefied gas over a 
moving surface. Hence, the purpose of this study is to extend the work by Bachok et al. [24] 
by using the second order slip flow modeled by Wu [1]. The numerical results obtained will 
be compared with the previous works. Some figures will be plotted and the characteristics of 
the flow will be discussed further. It is worth mentioning that no attempt has been made such 
present study. 

Problem formulation

Consider the steady boundary-layer flow of a 
nanofluid past a moving semi-infinite flat plate in a 
uniform free stream as shown in fig. 1.

It is assumed that the velocity of the uniform 
free stream is U and that of the flat plate is Uw = λU, 
where λ is the plate velocity parameter, see Weidman 
et al. [10]. The flow takes place at y ≥ 0, where y 
is the co-ordinate measured normal to the moving 
surface. It is also assumed that at the moving surface, 

the temperature, T, and the nanoparticle fraction, C, take constant values Tw and Cw, respective-
ly, while the values of T and C in the ambient fluid (inviscid flow) are denoted by T∞ and C∞, 
respectively. We consider a steady-state flow and make the standard boundary-layer approxima-
tions, based on a scale analysis, and write the governing eqs. (1)-(4) [25]:

0u v
x y

∂ ∂
+ =

∂ ∂
(1)

y

x

Boundary layer-

U + Uw slip

T , C∞ ∞

T , Cw w

Figure 1. Physical model and  
co-ordinate system
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where u and v are the velocity components along the x- and y-axes, respectively, α= k/(ρc)f – the  
thermal diffusivity of the fluid, n – the kinematic viscosity coefficient, and Ω = (ρc)p/(ρc)f. 
Further, the coefficients that appear in eqs. (3) and (4) are the Brownian diffusion coefficient, 
DB, and the thermophoretic diffusion coefficient, DT. By using the revised boundary conditions 
proposed by Kuznetsov and Nield [26], eqs. (1)-(4) are subjected to the boundary condition: 

, ,   ,    0 at 0

,     , as

T
slip w w B
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∞ ∞

∂ ∂
= + = = + = =

∂ ∂
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where Uslip is defined:
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were A and B are constants, Kn is Knudsen number, l = min(1/Kn, 1), χ – the momentum ac-
commodation coefficient with 0 ≤ χ ≤ 1, and ω – the molecular mean free path. Based on the 
definition of l, it is seen that for any given value of Knudsen number, we have 0 ≤ l ≤ 1. Since 
the molecular mean free path ω is always positive it results in that B – the negative number. 

The mathematical analysis of the problem is simplified by introducing the following 
dimensionless co-ordinates:

( ) ( ) ( )1/2 1/22 ,   / 2 , ( ) ,    ( )
w w

T T C CU x f U x y
T T C C

ψ ν η η ν θ η φ η∞ ∞

∞ ∞

− −
= = = =

− −
(7)

where ψ is the stream function defined as u = ∂ψ / ∂y and v = ∂ψ/∂x, which identically satisfies 
eq. (1). Substitute eq. (7) into eqs. (2)-(4), we obtain the following non-linear ODE:

''' '' 0f f f+ = (8)
21 0
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( ) ( )(0) , (0) (0) (0), (0) 1,    0  0 0
( ) 1, ( ) 0,    ( ) 0 as

f s f f f Nb Nt
f

λ σ δ θ φ θ
η θ η φ η η

′ ′′ ′′′ ′ ′= = + + = + =

′ → → → →∞
(11)

We take:

	
0

1 2
2w

Uv f
x
ν

= −



Najib, N., et al.: Dual Solutions on Boundary-Layer Flow over a Moving ... 
1120	 THERMAL SCIENCE: Year 2020, Vol. 24, No. 2B pp. 1117-1129

where f(0) = f0 = s is a non-dimensional constant which determines the transpiration rate, with 
s > 0 for suction. In the aforementioned equations, primes denote differentiation with respect to 
η and the four parameters are defined:

( ) ( )
( )

( ) ( )
( )

Pr , , Le ,
B w T wp p

Bf f

C D C C C D T T
Nb Nt

C D C T

ρ ρν ν
α ρ ν ρ ν

∞ ∞

∞

− −
= = = = (12)

where Pr is the Prandtl number, Le – the Lewis number, Nb – the Brownian motion parameter, 
and Nt – the thermophoresis parameter. Following Mukhopadhyay and Andersson [27], we take 
A = (2xn/U)1/2σ and B = (2nx/U)δ with σ > 0 being the first velocity slip and δ < 0 is the second 
velocity slip parameters, see Fang et al. [2]. It is worth mentioning that the moving parameter  
λ > 0 corresponds to downstream movement of the plate from the origin, while λ < 0 corre-
sponds to the upstream movement of the plate from the origin.

The physical quantities of interest are the skin friction coefficient, Cf, the local Nusselt 
number, and the local Sherwood number which are defined:

2= , Nu = , Sh =
( ) ( )

w w m
f x x

w B w

xq xq
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k T T D C CU
τ
ρ ∞ ∞− − (13)

where the wall shear stress τw, the local heat flux qw, and the local mass flux qm are given:
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with µ and k being the dynamic viscosity and thermal conductivity of the nanofluids, respec-
tively. By using the similarity variables eq. (11), we obtain:

( )
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where Rex = Ux/n is the local Reynolds number. In the present contex, Rex
–1/2 Nux and Rex

–1/2 Shx 
are referred to as the reduced Nusselt number and reduced Sherwood number denoted by Nux 
and Shx, which are represented by –θ ′(0) and – ϕ ′(0), respectively. 

Stability solutions

Rosca and Pop [4], and Weidman et al. [10] have shown that the lower branch solu-
tions are unstable (not physically realizable), while the upper branch solutions are stable (phys-
ically realizable). Because of the interesting findings mentioned previously, many works on 
stability analysis have been performed in order to prove the findings which can be found in  
[28-31 ]. Firstly, we consider the eqs. (2)-(4) in unsteady form. Thus, we introduce the new 
dimensionless time variable τ = Ut/2x. The use of τ is associated with an initial value problem 
and is consistent with the question of which solution will be obtained in practice (physically 
realizable). Thus, the unsteady eqs. (2)-(4):
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where t denotes the time. We introduce now the following new dimensionless variables: 
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so that eqs. (16)-(18) can be written:
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subjected to the boundary conditions:
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To test the stability of the steady flow solution f(η) = f0(η), θ(η) = θ0(η), and  
ϕ(η) = ϕ0(η) satisfying the boundary value problem eqs. (20)-(23):

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0, e ,   , e ,    , ef f F G Hγτ γτ γτη τ η η θ η τ θ η η φ η τ φ η η− − −= + = + = + (24)

where γ is an unknown eigenvalue, F(η), G(η), and H(η) are small relative to f0(η), θ0(η), and 
ϕ0(η). Solutions of the eigenvalue problem eqs. (20)-(23) give an infinite set of eigenvalues  
γ1 < γ2 < γ3,... If γ1 is negative, there is an initial growth of disturbances and the flow is unstable 
but when γ1 is positive, there is an initial decay and the flow is stable. Introduce eq. (24) into 
eqs. (20)-(23), we get the linearized problem:
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along with the boundary conditions:
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It should be stated that for particular values of Nb, Nt, and γ the stability of the corre-
sponding steady flow solutions f0(η), θ0(η), and ϕ0(η) are determined by the smallest eigenvalue 
γ. As it has been suggested by Harris et al. [32], the range of possible eigenvalues can be deter-
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mined by relaxing a boundary condition on F0(η), G0(η), or H0(η). For the present problem, we 
relax the condition that F ′0(η) → 0 as η → ∞, and for a fixed value of σ, δ, Nb, Nt, and Lewis 
number we solve the system eqs. (25)-(28) along with the new boundary conditions F″ 0 = 1.

Results and discussion

The ODE (8)-(11) has been solved numerically using code 1 and 2 in bvp4c func-
tion (MATLAB software) to obtain the missing values, namely f ″(0), – θ′(0), and – ϕ′(0)
by guessing a set of initial values until the graphs fulfill the prescribed far field bound-
ary conditions. The similarity variable η at a finite value denoted as ηmax and is set to be  
ηmax = 10 for the first solution while the second solution ηmax is set to be ηmax = 15. We run 
our bulk computations using ηmax, which sufficient to satisfy the far field boundary conditions 
asymptotically for all values of the parameters tested. Our main focus on this study is to test 
the velocity ratio parameter, λ, when there are slip effects on the flow (first-order slip, σ, and 
second-order slip, δ). This present study also dealt with nanofluid modeled by Buongiorno [33]. 
There is some common parameter involved which are Lewis number, Prandtl number, Brown-
ian motion, thermophoresis, and also mass suction. 

Table 1 and fig. 2 show the numerical results obtained are in a good agreement with 
previous works. Variation of skin friction coefficients as well as heat transfer coefficient for 
various values of σ and δ are illustrate in fig. 3. These figures indicate that skin friction coef-
ficient and heat transfer increased as we increased values of σ and |δ|. The figures also verify 
that unique solution only occur when λ > 0, while there exist dual solutions in between λc < λ 
< 0, i. e., when the plate moving upstream (opposite direction) from origin. The solutions exist 
till the critical value, λc (say lambda critical), beyond which the boundary-layer separates from 
the surface and the solution on boundary-layer approximations are impossible. The values of 
skin friction coefficient f ″(0) are positive when λ < 1, while negative values when λ > 1. Phys-
ically, positive sign for f ″(0) implies that the fluid exerts a drag force on the plate and negative 
sign means opposite way. The variations of heat transfer coefficient –θ′(0) with λ for several 
values of Lewis and Prandtl numbers, Nb and Nt are presented in fig. 4. It can be seen that 

the heat transfer coefficient increases as we in-
creased Lewis and Prandtl numbers. However, 
different observation can be seen that the heat 
transfer coefficient obviously higher for a nano-
fluid with smaller values of Nb and Nt. There-
fore, with small values of Nb and Nt is sufficient 
to increase the heat transfer rate at the surface.

Following Fang et al. [2], we can point 
out a further discussion for figs. 5 and 6, 
which illustrate the effects of the slip param-
eters σ and δ on the skin friction coefficient 
as well as heat transfer coefficient as a func-Figure 2. Skin friction coefficient f ″(0) with λ 

when s = σ = δ = 0
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tion of moving parameter, λ. As we can see in fig. 5, when only the first order slip parame-
ter, σ, is considered, the skin friction and heat transfer coefficient increased as σ increased. 
In fig. 6, when only the second order slip parameter, δ, is considered, we choose s = 2 be-
cause if s = 1 the results will be the same as in fig. 6. The skin friction coefficient and heat 
transfer rate is increasing as |δ| increases. Addition, the mass suction s is taken into consid-
eration and we presented the graph in fig. 7. Graphically, there exist unique solution when  
s > 1.8, while dual solutions exist up to sc < s ≤ 1.8, and no solutions occur s < sc. Figures 8-12 

Figure 3. Variation of skin friction coefficient f ″(0) and heat transfer coefficient –θ′(0) with λ for 
various values of σ and δ

Figure 4. Variation of heat transfer 
coefficient –θ′(0) with λ for various 
values of Le, Pr, Nb, and Nt
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display the velocity, temperature as well as nanoparticle volume fraction profiles for several 
values of σ, δ, Lewis and Prandtl numbers, and also s. All profiles satisfied the far field bound-
ary conditions eq. (11) asymptotically. From these profiles, we can prove that the dual solutions 
shown in figs. 1-7 are existed. The boundary-layer thickness for second solution is always 
thicker than the first solution. 

The systems of linear eigenvalue problem eqs. (25)-(28) are then being solved using 
code 3 and 4 in bvp4c function. This type of method is use in order to find the eigenvalues, γ. 
The computational results were obtained and had been shown in tab. 2. We have comparing our 
results with those reported by Weidman et al. [10] and it is shows that our numerical results are 
in excellent agreement with previous data. From the table, it is seen that the eigenvalues are 
approaching 0 when λ is approaching λc. The eigenvalues of first solution and second solution 
will increases as we increased λ. Clearly, the eigenvalues for first solution is positive while the 
second solution is negative. From the eigenvalues obtained, we can say that the first solution is 
stable and physically relevant but somehow for the second solution is said to be unstable and 
not physically relevant. 
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Figure 5. Variation of reduced skin friction coefficient f ″(0) and heat transfer coefficient –θ′(0)  with λ for various values of σ

Figure 6. Variation of skin friction coefficient f ″(0) and heat transfer coefficient –θ′(0) with λ for 
various values of δ
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Table 2. Smallest eigenvalues γ for selected values of λ (moving plate)

s σ δ λ
[10] Present work

First solution Second solution First solution Second solution

0 0 0

–0.35
–0.34
–0.32
–0.3

0.0576
0.1134
0.1879
0.2470

–0.0492
–0.0839
–0.1164
–0.1332
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–0.0492
–0.0839
–0.1164
–0.1332

1

0 0

–1.20
–1.18
–1.15
–1.13

0.1097
0.2128
0.3188
0.3773

–0.0963
–0.1669
–0.2240
–0.2499

0.5 –0.5

–2.79
–2.5
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–2.1

0.0431
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0.7554

–0.0417
–0.3377
–0.4013
–0.4363

1 –1
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Conclusions

The steady boundary-layer flow of a nanofluid past a moving semi-infinite flat plate 
in a uniform free stream in the presence of mass suction and second-order slip flow model 
introduced by Wu [1], and also used by Fang et al. [2] and Fang and Aziz [3] is numerically 

Figure 9. Nanoparticle 
volume fraction profiles 
ϕ(η) for several values of 
Lewis number 



Najib, N., et al.: Dual Solutions on Boundary-Layer Flow over a Moving ... 
THERMAL SCIENCE: Year 2020, Vol. 24, No. 2B, pp. 1117-1129	 1127

studied. The boundary-layer equations in form of PDE are transformed into ODE using appro-
priate similarity variables before being solved using bvp4c function in MATLAB software. The 
analysis performed that.

yy Dual solutions occurred for opposing flow (when the plate and free stream are moving in 
opposite direction each other), λ < 0 and in certain range of mass suction up to critical point, 
sc < s ≤ 1.8.

yy Largest Lewis and Prandtl numbers are required to enhance the heat transfer coefficient.
yy Only small value of Nb and Nt is sufficient to increase the heat transfer coefficient.
yy The increment of slip parameters lead to decrease the skin friction coefficient whereas in-

crease the heat transfer coefficient.
yy The first solution is linearly stable and physically meaningful, while the second solution is 

linearly unstable and not physically relevant. 
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A, B	 – constant
C	 – concentration
Cw	 – plate concentration
C∞	 – ambient concentration
c	 – volumetric volume expansion coefficient of 

the nanofluid
DB	 – Brownian diffusion coefficient
DT	 – thermophoretic diffusion coefficient
Kn	 – Knudsen number
k	 – thermal conductivity
Le	 – Lewis number
Nb	 – Brownian motion parameter
Nt	 – thermophoresis parameter
Pr	 – Prandtl number
Re	 – Reynolds number
s	 – suction

T	 – temperature
Tw	 – plate temperature
T∞	 – ambient temperature
t	 – time
U	 – free stream velocity
Uw	 – flat plate velocity
Uslip	 – slip velocity
u, v	 – velocity components
v	 – velocity vector
x, y	 – co-ordinate system

Greek symbols

α	 – thermal diffusivity
δ	 – second order slip parameter
λ	 – moving parameter
μ	 – dynamic viscosity
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