Mixed convective radiative flow of viscoelastic liquid subject to space dependent internal heat source and chemical reaction

Tasawar Hayata,b, Ikram Ullaha 1, Ahmed Alsaedib and Bashir Ahmadb

a Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
b Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University P. O. Box 80203, Jeddah 21589, Saudi Arabia

Abstract: Present study addresses Soret and Dufour effects in mixed convection MHD flow of viscoelastic liquid with chemical reaction. Flow induced by an exponential stretching sheet is addressed in the presence of magnetic field. Energy expression is modelled by exponential space dependent internal heat source, thermal radiation and convective condition. Relevant problems are modelled by employing boundary layer concept. The partial differential systems are reduced to ordinary differential systems. Result problem is solved by homotopic technique. Physical insight of results is arranged by graphs and tables.

Keywords: Viscoelastic liquid; Exponential based heat source; Mixed convection; Chemical reaction.

Introduction

Liquid flow over a stretched surface has been attracted by the engineers, numerical simulists and modelers. It is due to its vast applications in the manufacturing process and polymer industry comprising spinning of filaments, wire drawing, hot rolling, production of crystal growing fibers, processing of food stuffs, paper production, rapid spray cooling, continues casting, cooling of microelectronics and glass blowing. Crane [1] inspected the boundary-layer flow of an incompressible viscous fluid over a linear stretching sheet. He obtained similarity solution in closed form. Since then, many researchers [2-8] provided their research contributions via various concept of stretching surfaces. However in fact the stretching of a plastic sheet may not essentially be linear. The characteristics of flow and heat transfer by an exponentially stretched surface is important for thinning and annealing of copper wires, food, paper and plastic processes. The final product depends critically on rate of heat transfer and stretching. Both kinematics of cooling or simultaneous heating and stretching have a crucial affect on the nature of final product [9]. Magyari and Keller [10] examined the flow due to an exponentially stretching sheet. They studied the heat transfer aspects in the case where the wall temperature varies exponentially from the leading edge. Viscous dissipation in mixed convective flow by an exponentially stretching surface is studied by Partha et al. [11]. It is found that velocity enhances for both mixed convection and viscous dissipation. Sajid and Hayat [12] explored radiation in flow by an exponentially stretching surface. Flow of magneto second grade nanoliquid persuaded by an exponentially stretching sheet discussed by Hayat et al. [13].

The respective mass/energy fluxes can be achieved by taking gradients of temperature/concentration. Thermal-diffusion (Soret effect) is generated because of temperature gradient while diffusion-thermo (Dufour effect) occurred due to concentration gradient. Such aspects have great implementation in area of chemical engineering and geosciences. Soret effect

1Corresponding author. Tel.: +92-51 90642172.
email address: ikram020@yahoo.com
can be seen in solar ponds, micro-structure and the biological systems of the world oceans. Thermal-diffusion is also utilized in process of isotope separation and in mixture between gases with small molecular weight (He, H\textsubscript{2}) and of medium molecular weight (air, N\textsubscript{2}). Related analysis in this direction have been mentioned by the studies [14-18].

Excessive heat generation is a serious issue in engineering applications like nuclear power plants, concrete industry, computer processors and inside of earth. Effective heat transfer can drastically improve the effectiveness in such cases. There is most likely that heat transfer is very valuable in dilution technique, dialysis, oxygenation and hyperthermia. Tissue engineering uses thermal excursion to selectively destroy tissues and cells. All these applications require heat transfer in the most proficient way by utilizing both free and forced convection which frequently supports mass transfer too. Heat and mass transfer through mixed convection is noticeable in processes like food solidification, diffusion of nutrients, reverse osmosis, cooling of nuclear reactors, float glass production cell separation, chemical waste management, cooling of combustion chamber wall in a gas defroster and turbine system. Many researchers admits the importance of involvement of mixed convection. Mixed convection in MHD viscoelastic fluid flow over a porous stretching sheet is analytically elaborated by Turkyilmazoglu [19]. Mixed convective boundary layer flow over a convectively heated sheet is addressed by Grosan et al. [20]. MHD mixed convective flow by an inclined porous plate with slip effect is discussed by Das et al. [21]. Imtiaz et al. [22] studied mixed convective nanofluid flow with Newtonian heating. Hayat et al. [23] studied mixed convection in 3D flow of Sisko nanoliquid. Further importance of thermal radiation is prevalent in the industrial and space technology process at vary high temperature. Furnace design, plasma physics, space craft re-entry and propulsion system, satellites, nuclear plants etc are examples of such processes. In general radiation along with the free and forced convective flows is of crucial importance in space technology and high temperature processes. Human body sustains suitable temperature by considering these two procedures. Few studies for thermal radiation in the presence of mixed convection are given through refs. [24-28].

Here our motivation is to assess the outcome of exponential heat source in flow of viscoelastic liquid by an exponentially moving surface. Few investigators in the past only utilized exponential heat source [29-31]. There is no analysis available yet that looks flow of viscoelastic liquid with such aspect. Additionally we accounted radiation, thermal-diffusion and diffusion-thermo (cross-diffusion) and chemical reaction. The governing problems are achieved via boundary layer assumptions. Homotopic approach [32-43] is employed for the solutions of non-dimensional governing problems. Physics of sundry variables are studied graphically and for tabulated values.

Problems development

Consider 3D mixed convection flow of an incompressible viscoelastic liquid. Exponentially stretching sheet induces the flow. Applied magnetic field is imposed along $z-$axis. Small magnetic Reynolds number is accounted. The laminar flow is restricted in the domain $z > 0$. Heat and mass transfer characteristics have been adopted when both Soret and Dufour effects are present. Additionally exponentially heat source and chemical reaction are addressed. Radiation is entertained in the energy expression. Moreover the respective sheet and ambient liquid temperatures and concentrations are designated through $(T_f$ and T_∞) and $(C_w$ and C_∞). Keeping the aforesaid assumptions in mind, the governing problems are

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0,$$

(1)
\[u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) - \frac{\sigma B_0^2}{\rho} u + g(\beta_T(T - T_c) + \beta_C(C - C_s)), \]

\[u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = \nu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) - \frac{\sigma B_0^2}{\rho} v, \]

\[u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} = \alpha_m \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \frac{Dk_T}{\rho C_p} \frac{\partial^2 T}{\partial z^2} - K_m(C - C_s). \]

where \((u, v, w)\) denote the respective velocity components parallel to \((x, y, z)\), \(k_0 = -\frac{\alpha}{\rho}\) the elastic parameter with \(k_0 > 0\) represents elasto-viscous liquid, \(k_0 < 0\) for second grade fluid and \(k_0 = 0\) for viscous liquid, \(\alpha\) the normal stress moduli, \(Q_0\) the heat generation/absorption variable, \(\nu = \mu / \rho\) the kinematic viscosity, \(\rho\) the density, \(g\) the acceleration due to gravity, \(\mu\) the dynamic viscosity, \(\beta_C\) the coefficient of solutal expansion, \(T\) the temperature, \(\beta_T\) the coefficient of thermal expansion, \(\alpha_m\) the thermal diffusivity, \(k_r\) the thermal-diffusion, \(D\) the diffusion coefficient, \(C_p\) the specific heat, \(T_m\) the fluid mean temperature, \(q_r\) the radiative heat flux, \(C\) the concentration, \(c_s\) the concentration susceptibility, \(K_m\) the chemical reaction rate and \(h_f\) the convective heat transfer coefficient. This analysis presumes that surface stretching velocities, wall temperature and concentration are

\[U_w = U_0 e^{\frac{z}{L}}, \quad V_w = V_0 e^{\frac{z}{L}}, \quad T_w = T_0 + T_0 e^{\frac{z}{L}}, \quad C_w = C + C_0 e^{\frac{z}{L}}, \]

where \(U_0, V_0, T_0\) and \(C_0\) are the constants, \(A\) is the temperature exponent, \(B\) is the concentration exponent and \(L\) is the reference length. Through Rosseland's approximation the expression for radiative heat flux \(q_r\) is

\[q_r = -\frac{4\sigma_1}{3m^{**}} \frac{\partial(T^{4})}{\partial y} = -\frac{16\sigma^{**} T_{x}^{3}}{3m^{**}} \frac{\partial^2 T}{\partial z^2}, \]

in which \(\sigma^{**}\) shows the Stefan-Boltzman and \(m^{**}\) designates the coefficient of mean absorption. Invoking Eq. (9) the energy equation can be converted to the form.
\[
\begin{align*}
\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = & \quad \alpha \frac{\partial^2 u}{\partial z^2} + \frac{D_k}{c_f} \frac{\partial^2 c}{\partial z^2} + \frac{16\eta^2 T_s}{3\rho \nu_p} \frac{\partial T}{\partial z} \\
+ & \quad Q_0 \left(\frac{T - T_s}{\rho \nu_p} \right) \exp \left(-\frac{U_0}{2L} \right)^{1/2} e^{\frac{u^2 + v^2 + w^2}{z}},
\end{align*}
\] (10)

The dimensionless variables are taken in the forms
\[
\begin{align*}
u = & \quad U_0 e^{\frac{u}{v^2}} f'(\eta), \quad v = U_0 e^{\frac{v}{v^2}} g'(\eta), \quad w = -\left(\frac{vU_0}{2L} \right)^{1/2} e^{\frac{u^2 + v^2 + w^2}{z}} (f + \eta f' + g + \eta g'), \\
T = & \quad T_e + T_0 \frac{A(\eta)}{2\pi^2 \eta} \theta(\eta), \quad C = C_e + C_0 e^{\frac{B(\eta)}{2\pi^2 \eta}} \phi(\eta), \quad \eta = \left(\frac{U_0}{2vL} \right)^{1/2} e^{\frac{u^2 + v^2 + w^2}{z}}.
\end{align*}
\] (11)

Equation (1) is identically satisfied while the Eqs. (2)-(8) and Eq. (10) give
\[
\begin{align*}
f'''' + (f + g)f''' - 2(f' + g')f'' + K \left\{ \frac{6f''g''}{2} + (3g'' - 3f'' + \eta g')f''
+ (4g' + 2\eta g'')f''' - (f + g + \eta g')f'''' \right\} \\
- M^2 f' + 2\lambda (\theta + N\phi) = 0,
\end{align*}
\] (12)

\[
\begin{align*}
g'''' + (f + g)g''' - 2(f' + g')g'' + K \left\{ \frac{6g''g''}{2} + (3f'' - 3g'' + \eta f')g''
+ (4f' + 2\eta f'')g''' - (f + g + \eta f')g'''' \right\} \\
- M^2 g' = 0,
\end{align*}
\] (13)

\[
\begin{align*}
(1 + Rd) \theta'' + Pr[(f + g)\theta' - A(f' + g')\theta + D_f\phi' + \delta \exp(-\eta)] = 0, \quad (14)
\end{align*}
\]

\[
\begin{align*}
\phi'' + Sc [(f + g)\phi' - B(f' + g')\phi + Sr\theta'' - \gamma \phi] = 0,
\end{align*}
\] (15)

\[
\begin{align*}
f = 0, \quad g = 0, \quad f' = 1, \quad g' = \alpha, \quad \theta' = -\gamma(1 - \theta(0)), \quad \phi' = 1 \text{ at } \eta = 0,
\end{align*}
\] (16)

\[
\begin{align*}
f' \to 0, \quad g' \to 0, \quad \theta \to 0, \quad \phi \to 0 \text{ as } \eta \to \infty.
\end{align*}
\] (17)

Here \(\lambda \) shows mixed convection variable, \(K \) dimensionless viscoelastic parameter, \(M \) magnetic parameter, \(\delta \) heat source parameter, \(N \) buoyancy parameter, \(Pr \) Grashof number, \(Re \) Reynold number, \(\alpha \) ratio parameter, \(Rd \) radiation parameter, \(D_f \) Dufour number, \(Pr \) Prandtl number, \(Sr \) Soret number, \(Sc \) Schmidt number, \(\gamma \) Biot number due to temperature and \(\gamma_1 \) chemical reaction parameter. These quantum values have quantities
\[
\begin{align*}
\lambda = & \quad \frac{Qr}{Re}, \quad N = \frac{B(C_w - C_s)}{\rho_0 (T_w - T_s)}, \quad Gr = \frac{\rho_0 C_w (T_w - T_s)}{\nu^2}, \quad Re = \frac{U_0 L}{v}, \quad \alpha = \frac{V_0}{U_0}, \quad K = \frac{kU_0}{2vL}, \\
Pr = & \quad \frac{c_w}{\alpha}, \quad Rd = \frac{16\eta^2 T_s}{3km}, \quad D_f = \frac{Dk}{c_w c_f v} \left(\frac{C_w - C_s}{T_w - T_s} \right), \quad Sc = \frac{k}{\nu}, \quad Sr = \frac{Dk}{T_0 v} \left(\frac{C_w - C_s}{T_w - T_s} \right),
\end{align*}
\] (18)

\[
\begin{align*}
\gamma = & \quad \frac{k}{\nu} \sqrt{\frac{2vL}{U_0}}, \quad \gamma_1 = \frac{k c_w}{U_0 \alpha}, \quad \delta = \frac{Q L}{U_0 \alpha}, \quad M^2 = \frac{2\pi \eta_0^2 L}{\rho l}, \quad \eta_0 = \frac{2 \pi \eta_0^2 L}{\rho l}.
\end{align*}
\]

Expressions for local Nusselt number (\(Nu_x \)) and Sherwood (\(Sh_x \)) numbers are stated as
\[
\begin{align*}
Nu_x = & \quad \frac{x q_w}{k (T_w - T_s)} + (q_w)_{w}, \quad Sh_x = \frac{x j_w}{D (C_w - C_s)},
\end{align*}
\] (19)

where
\[
\begin{align*}
q_w = -k \left(\frac{\partial T}{\partial z} \right)_{z=0}, \quad j_w = -D \left(\frac{\partial C}{\partial z} \right)_{z=0}.
\end{align*}
\] (20)

Eq. (19)-(20) in non-dimensional form gives
\[
\left(\frac{Re_x}{2} \right)^{-1/2} Nu_x = -\frac{x}{L} \left(1 + Rd \right) \theta'(0),
\]
(21)
\[
\left(\frac{Re_x}{2} \right)^{-1/2} Sh_x = -\frac{x}{L} \phi'(0),
\]
(22)

where \(Re = \frac{U_x L}{\nu} \) defines the Reynolds number.

Analysis of series solutions

The initial approximations \((f_0, g_0, \theta_0, \phi_0)\) and operators \((\mathcal{L}_f, \mathcal{L}_g, \mathcal{L}_\theta, \mathcal{L}_\phi)\) are
\[
\begin{align*}
&f_0(\eta) = 1 - e^{-\eta}, \quad g_0(\eta) = \alpha(1 - e^{-\eta}) \\
&\theta_0(\eta) = \frac{\gamma}{1+\gamma} e^{-\eta}, \quad \phi_0(\eta) = \frac{\gamma_l}{1+\gamma_l} e^{-\eta}, \\
&\mathcal{L}_f = f'' - f', \quad \mathcal{L}_g = g'' - g' \\
&\mathcal{L}_\theta = \theta'' - \theta, \quad \mathcal{L}_\phi = \phi'' - \phi
\end{align*}
\]
(23)

with
\[
\begin{align*}
\mathcal{L}_f & \left[\beta_1^{**} + \beta_2^{**} e^\eta + \beta_3^{**} e^{-\eta} \right] = 0, \\
\mathcal{L}_g & \left[\beta_4^{**} + \beta_5^{**} e^\eta + \beta_6^{**} e^{-\eta} \right] = 0, \\
\mathcal{L}_\theta & \left[\beta_7^{**} e^\eta + \beta_8^{**} e^{-\eta} \right] = 0, \\
\mathcal{L}_\phi & \left[\beta_9^{**} e^\eta + \beta_{10}^{**} e^{-\eta} \right] = 0
\end{align*}
\]
(24)
in which \(\beta_i^{**} \) \((i = 1-10) \) depict the constants.

Here it is desired to achieve the admissible ranges of embedding variables for convergence of series solutions. For such intention, we have sketched the \(h \) curves (see Figs. 1 and 2). Clearly these Figs. depict that acceptable values of these embedding variables are \(-0.65 \leq h_f \leq -0.09, -0.64 \leq h_g \leq -0.01, -1.03 \leq h_\theta \leq 0.1\) and \(-0.98 \leq h_\phi \leq 0.1\).

Discussion

Main emphasis here is given to address the salient feature of influential parameters on velocities, temperature and concentration. The responses of Nusselt and Sherwood numbers for distinct values of interesting variables are examined (see Table 1). Aspects of \(\alpha \) on \(f'(\eta) \) and \(g'(\eta) \)
are portrayed in Figs. 2 and 3. Here velocity components \(f'(\eta) \) and \(g'(\eta) \) show reverse trend when \(\alpha \) is enhanced. Physically when \(\alpha \) increases from zero then lateral surface begins to expand in the \(y \)-direction and it shrink in \(x \)-direction. Thus \(g'(\eta) \) increases while the velocity components \(f'(\eta) \) diminishes. Influences of \(\lambda \) on velocity profiles \(f'(\eta) \) and \(g'(\eta) \) are displayed in Figs. 4 and 5. It is clearly shown that \(f'(\eta) \) enhances by increasing \(\lambda \).

In fact viscous forces are less effective rather than buoyancy forces. Opposite feature of \(g'(\eta) \) is seen for higher \(\lambda \). Figs. 6 and 7 are sketched to visualize the behavior of \(N \) on \(f'(\eta) \) and \(g'(\eta) \). Here larger \(N \) result for an increment in \(f'(\eta) \). For larger \(N \) both \(g'(\eta) \) and momentum layer decayed. Curves of dimensionless \(\theta(\eta) \) with change in \(M \) is elucidated in Fig. 8. This Fig. reveals that \(\theta(\eta) \) marginally increases as \(M \) is enhanced. It is well known fact that magnetic field intensity tends to produced drag force which resists the liquid motion and ultimately the thermal field is elevated. Fig. 9 is drawn to see the characteristics of \(\delta \) on \(\theta(\eta) \).

It is found that \(\theta(\eta) \) is augmented for larger \(\delta \). Fig. 10 is sketched to analyze behavior of Biot number \(\gamma \) on \(\theta(\eta) \). It is concluded that \(\theta(\eta) \) and related layer thickness are enhanced for larger \(\gamma \). Fig. 11 demonstrates to analyze the behavior of \(Rd \) on temperature \(\theta(\eta) \). It is reported that \(\theta(\eta) \) is enhanced for higher \(Rd \). Physically an increment in radiation promotes the heat flux which corresponds to rise in \(\theta(\eta) \). Fig. 12 elucidates that an increase in \(Pr \) decays the thermal field. The fluid with higher \(Pr \) is more viscous. The fluid with a higher viscosity has a lower temperature while the fluid with lower viscosity has higher temperature. Thus an increase in \(Pr \) leads to diminish \(\theta(\eta) \). Impact of \(Sr \) on \(\theta(\eta) \) is depicted in Fig. 13. There is reduction in \(\theta(\eta) \) for higher \(Sr \). Temperature identifies increasing nature with intensity of \(D_f \) (see Fig. 14). In fact \(D_f \) is involved in energy expression by concentration gradient. Therefore \(\theta(\eta) \) is enhanced with higher concentration gradient. Figs. 15 and 16 are drawn to see the impacts of \(\gamma_1 \) for generative \((\gamma_1 < 0) \) and destructive \((\gamma_1 > 0) \) chemical reactions for \(\phi(\eta) \). Concentration field \(\phi(\eta) \) reduces with increment in destructive chemical reaction \((\gamma_1 > 0) \) while it enhances in case of \((\gamma_1 < 0) \). Behavior of \(Sc \) on \(\phi(\eta) \) is presented in Fig. 17. Schmidt number is the ratio of momentum diffusivity to the mass diffusivity higher \(Sc \) lead to decay in mass diffusivity which in turn declines the concentration field. Fig. 18 portrays the variation in \(\phi(\eta) \) for various \(Sr \). Here \(\phi(\eta) \) is an increasing function of \(Sr \). Fig. 19 designates that higher Dufour number \(D_f \) enhances the concentration and its related boundary layer thickness. Tables 1 perceives numerical data of Nusselt and Sherwood numbers \(Rd, \gamma, \gamma_1, Sr, D_f \) and \(\delta \). Here we concluded that Nusselt number enhances for \(Rd, \gamma \), and \(Sr \). It is also noted that Sherwood numbers decay via \(\gamma, \delta \) and \(Sr \).
Fig. 2. Impact of $f' (\eta)$ via α.

Fig. 3. Impact of $g' (\eta)$ via α.

Fig. 4. Impact of $f' (\eta)$ via λ.
Fig. 5. Impact of $g'(\eta)$ via λ.

Fig. 6. Impact of $f'(\eta)$ via N.

Fig. 7. Impact of $g'(\eta)$ via N.
Fig. 8. Impact of $\theta(\eta)$ via M.

Fig. 9. Impact of $\theta(\eta)$ via δ.

Fig. 10. Impact of $\theta(\eta)$ via γ.
Fig. 11. Impact of $\theta(\eta)$ via Rd.

Fig. 12. Impact of $\theta(\eta)$ via Pr.

Fig. 13. Impact of $\theta(\eta)$ via Sr.
Fig. 14. Impact of $\theta(\eta)$ via D_f.

Fig. 15. Impact of $\phi(\eta)$ via $(\gamma_1 \geq 0)$.

Fig. 16. Impact of $\phi(\eta)$ via $(\gamma_1 \leq 0)$.
Fig. 17. Impact of $\phi(\eta)$ via Sc.

Fig. 18. Impact of $\phi(\eta)$ via Sr.

Fig. 19. Impact of $\phi(\eta)$ via D_f.
Table 1: Numerical data of surface heat transfer rate $-(1 + Rd)\theta'(0)$ and surface mass transfer rate $-\phi'(0)$ for δ, $Rd\gamma$, γ_1, $Sr\gamma$ and D_f when other parameters are fixed.

<table>
<thead>
<tr>
<th>δ</th>
<th>γ</th>
<th>$Rd\gamma$</th>
<th>$\gamma_1\gamma$</th>
<th>$Sr\gamma$</th>
<th>$D_f\gamma$</th>
<th>$(1 + Rd)\theta'(0)$</th>
<th>$\phi'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.10054</td>
<td>0.09181</td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.10018</td>
<td>0.09151</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.09999</td>
<td>0.09150</td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.38052</td>
<td>0.08945</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.50124</td>
<td>0.08420</td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.71584</td>
<td>0.07760</td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.09430</td>
<td>0.08964</td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.12612</td>
<td>0.90024</td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.75010</td>
<td>0.42019</td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14561</td>
<td>0.93047</td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14562</td>
<td>1.23450</td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14563</td>
<td>1.34501</td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.09986</td>
<td>0.09171</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.09990</td>
<td>0.08943</td>
</tr>
<tr>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.09993</td>
<td>0.08805</td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.10037</td>
<td>0.09124</td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.09787</td>
<td>0.09129</td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.09636</td>
<td>0.09132</td>
</tr>
</tbody>
</table>

Closing remarks

Here we addressed the effects of Soret-Dufour and exponential space dependent internal heat source on MHD flow of viscoelastic liquid towards an exponentially stretched surface. Key results can be highlighted in the following bullets:

- Similar feature of velocity profiles are noticed for larger λ and N.
- Radiation and heat source variables improves the temperature field.
- Temperature is an increasing function of M.
- Features of $Sr\gamma$ and $D_f\gamma$ on temperature and concentration are quite reverse.
- Surface heat and mass transfer rates are augmented via δ.

References

[41] T. Hayat, I. Ullah, T. Muhammad and A. Alsaedi, A revised model for stretched flow of
