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Present study addresses Soret and Dufour effects in mixed convection MHD flow of 
viscoelastic liquid with chemical reaction. Flow induced by an exponential stretch-
ing sheet is addressed in the presence of magnetic field. Energy expression is mod-
elled by exponential space dependent internal heat source, thermal radiation, and 
convective condition. Relevant problems are modelled by employing boundary-lay-
er concept. The partial differential systems are reduced to ordinary differential 
systems, and problem is solved by homotopic technique. Physical insight of results 
is arranged by graphs and tables. 
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Introduction

Liquid flow over a stretched surface has been attracted by the engineers, and scientists 
devoted to numerical simulations and modeling. It is due to its vast applications in the manufac-
turing process and polymer industry comprising spinning of filaments, wire drawing, hot rolling, 
production of crystal growing fibers, processing of food stuffs, paper production, rapid spray 
cooling, continues casting, cooling of microelectronics and glass blowing. Crane [1] inspected 
the boundary-layer flow of an incompressible viscous fluid over a linear stretching sheet. He 
obtained similarity solution in closed form. Since then, many researchers [2-8] provided their 
research contributions via various concept of stretching surfaces. However, in fact the stretch-
ing of a plastic sheet may not essentially be linear. The characteristics of flow and heat transfer 
by an exponentially stretched surface is important for thinning and annealing of copper wires, 
food, paper and plastic processes. The final product depends critically on rate of heat transfer 
and stretching. Both kinematics of cooling or simultaneous heating and stretching have a crucial 
effect on the nature of final product [9]. Magyari and Keller [10] examined the flow due to an 
exponentially stretching sheet. They studied the heat transfer aspects in the case where the wall 
temperature varies exponentially from the leading edge. Viscous dissipation in mixed convective 
flow by an exponentially stretching surface is studied by Partha et al. [11]. It is found that veloc-
ity enhances for both mixed convection and viscous dissipation. Sajid and Hayat [12] explored 
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radiation in flow by an exponentially stretching surface. Flow of magneto second grade nanoliq-
uid persuaded by an exponentially stretching sheet discussed by Hayat et al. [13].

The respective mass/energy fluxes can be achieved by taking gradients of tempera-
ture/concentration. Thermal-diffusion (Soret effect) is generated because of temperature gradi-
ent while diffusion-thermo (Dufour effect) occurred due to concentration gradient. Such aspects 
have great implementation in area of chemical engineering and geosciences. Soret effect can 
be seen in solar ponds, micro-structure, and the biological systems of the world oceans. Ther-
mal-diffusion is also utilized in process of isotope separation and in mixture between gases with 
small molecular weight (He, H2) and of medium molecular weight (air, N2). Related analysis in 
this direction have been mentioned by the studies [14-18].

Excessive heat generation is a serious issue in engineering applications like nuclear 
power plants, concrete industry, computer processors and inside of earth. Effective heat transfer 
can drastically improve the effectiveness in such cases. There is most likely that heat transfer is 
very valuable in dilution technique, dialysis, oxygenation, and hyperthermia. Tissue engineer-
ing uses thermal excursion to selectively destroy tissues and cells. All these applications require 
heat transfer in the most proficient way by utilizing both free and forced convection which 
frequently supports mass transfer too. Heat and mass transfer through mixed convection is no-
ticeable in processes like food solidification, diffusion of nutrients, reverse osmosis, cooling of 
nuclear reactors, float glass production cell separation, chemical waste management, cooling of 
combustion chamber wall in a gas defroster and turbine system. Many researchers admits the 
importance of involvement of mixed convection. Mixed convection in MHD viscoelastic fluid 
flow over a porous stretching sheet is analytically elaborated by Turkyilmazoglu [19]. Mixed 
convective boundary-layer flow over a convectively heated sheet is addressed by Grosan et al. 
[20]. The MHD mixed convective flow by an inclined porous plate with slip effect is discussed 
by Das et al. [21]. Imtiaz et al. [22] studied mixed convective nanofluid flow with Newtonian 
heating. Hayat et al. [23] studied mixed convection in 3-D flow of Sisko nanoliquid. Further 
importance of thermal radiation is prevalent in the industrial and space technology process at 
very high temperature. Furnace design, plasma physics, space craft re-entry and propulsion 
system, satellites, nuclear plants, etc. are examples of such processes. In general radiation along 
with the free and forced convective flows is of crucial importance in space technology and high 
temperature processes. Human body sustains suitable temperature by considering these two 
procedures. Few studies for thermal radiation in the presence of mixed convection are given 
through refs. [24-28].

Here our motivation is to assess the outcome of exponential heat source in flow of 
viscoelastic liquid by an exponentially moving surface. Few investigators in the past only uti-
lized exponential heat source [29-31]. There is no analysis available yet that looks flow of vis-
coelastic liquid with such aspect. Additionally, we accounted radiation, thermal diffusion and 
diffusion thermo (cross-diffusion) and chemical reaction. The governing problems are achieved 
via boundary-layer assumptions. Homotopic approach [32-43] is employed for the solutions of 
non-dimensional governing problems. Physics of sundry variables are studied graphically and 
for tabulated values.

Problems development

Consider 3-D mixed convection flow of an incompressible viscoelastic liquid. Expo-
nentially stretching sheet induces the flow. Applied magnetic field is imposed along z-axis. 
Small magnetic Reynolds number is accounted. The laminar flow is restricted in the domain 

0z > . Heat and mass transfer characteristics have been adopted when both Soret and Dufour 



Hayat, T., et al.: Mixed Convective Radiative Flow of Viscoelastic Liquid Subject to ... 
THERMAL SCIENCE: Year 2019, Vol. 23, No. 6B, pp. 3843-3853 3845

effects are present. Additionally, exponentially heat source and chemical reaction are addressed. 
Radiation is entertained in the energy expression. Moreover the respective sheet and ambient 
liquid temperatures and concentrations are designated through ( fT  and )T∞ , and ( wC  and )C∞ . 
Keeping the aforesaid assumptions in mind, the governing problems are:
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where ( ,u ,v )w  denote the respective velocity components parallel to ( ,x ,y )z , 0 1 /k α ρ= −  
– the elastic parameter with 0 0k >  represents elastico-visous liquid, 0 0k <  for second grade 
fluid and 0 0k =  for viscous liquid, 1α  – the normal stress moduli, 0Q  – the heat generation/
absorption variable, /ν µ ρ=  – the kinematic viscosity, ρ  – the density, g – the acceleration 
due to gravity, µ  – the dynamic viscosity, Cβ  – the coefficient of solutal expansion, T  – the 
temperature, Tβ  – the coefficient of thermal expansion, mα  – the thermal diffusivity, Tk  – the 
thermal-diffusion, D – the diffusion coefficient, pc  – the specific heat, mT  – the fluid mean 
temperature, rq  – the radiative heat flux, C  – the concentration, sc  – the concentration suscep-
tibility, mK  – the chemical reaction rate, and fh  – the convective heat transfer coefficient. This 
analysis presumes that surface stretching velocities, wall temperature and concentration are:
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where 0 ,U  0 ,V  0T , and 0C  are the constants, A is the temperature exponent, B  is the concen-
tration exponent, and L  is the reference length. Through Rosseland’s approximation the ex-
pression for radiative heat flux rq  is:
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in which σ ∗∗ shows the Stefan-Boltzman and m∗∗  designates the coefficient of mean absorption. 
Invoking eq. (9) the energy equation can be converted to the form:
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The dimensionless variables are taken in the forms:
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Equation (1) is identically satisfied while the eqs. (2)-(8) and eq. (10) give:
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where λ  shows mixed convection variable, K  – the dimensionless viscoelastic parameter, M
– the magnetic parameter, δ  – the heat source parameter, N  – the buoyancy ratio, Gr – the 
Grashof number, Re  – the Reynold number, α  – the ratio parameter, Rd  – the radiation pa-
rameter, fD  – the Dufour number, Pr – the Prandtl number, Sr – the Soret number, Sc – the 
Schmidt number, γ  – the Biot number due to temperature, and 1γ  – the chemical reaction pa-
rameter. These quantities have values:
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Expressions for local Nusselt number, Nux, and Sherwood, Shx, numbers are stated as:
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Equations (19)-(20) in non-dimensional form gives:
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where Re /wU L ν=  defines the Reynolds number.

Analysis of series solutions

The initial approximations ( 0 ,f  0 ,g  0θ , 0φ ) and operators ( ,fL  ,gL  ,θL  φL ) are:
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in which iβ
∗∗  (i = 1-10) depict the constants.

Here it is desired to achieve the admissible ranges of embedding variables for conver-
gence of series solutions. For such intention, we have sketched the   curves, fig. 1. Clearly 
these figures depict that acceptable values of these embedding variables are 0.65 0.09f− ≤ ≤ − , 

0.64 0.01g− ≤ ≤ − , 1.03 0.1θ− ≤ ≤ , and 0.98− 0.1φ≤ ≤ . 
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Discussion

Main emphasis here is given to address the salient feature of influential parameters on 
velocities, temperature and concentration. The responses of Nusselt and Sherwood numbers for 
distinct values of interesting variables are examined, see tab. 1. Aspects of α  on ( )f η′  and 

( )g η′  are portrayed in figs. 2 and 3. Here velocity components ( )f η′  and ( )g η′  show reverse 
trend when α  is enhanced. Physically when α  increases from zero then lateral surface begins 
to expand in the y-direction and it shrink in x-direction. Thus ( )g η′  increases while the velocity 
components ( )f η′  diminishes. Influences of λ  on velocity profiles ( )f η′  and ( )g η′  are dis-
played in figs. 4 and 5. It is clearly shown that ( )f η′  enhances by increasing λ . In fact viscous 
forces are less effective rather then buoyancy forces. Opposite feature of ( )g η′  is seen for high-

Figure 1. The  -curves for ( ), ( ), ( )f gη η θ η ,  
and ( )φ η

Figure 2. Impact of ( )′f η via α

η

(
)

f
η′

Table 1: Numerical data of surface heat transfer rate ′− +(1 ) (0)Rd θ  and  
surface mass transfer rate ( )′− 0φ  for δ , Rd , 1γ , γ , Sr, and Df when other 
parameters are fixed

δ γ Rd γ1 Sr Df (1 ) (0)Rd θ′+ (0)φ′
0.0 0.10054 0.09181
0.3 0.10018 0.09151
1.0 0.09999 0.09150

0.4 0.38052 0.08945
1.0 0.50124 0.08420
1.4 0.71584 0.07760

0.0 0.09430 0.08964
0.3 0.12612 0.90024
0.6 0.75010 0.42019

0.4 0.14561 0.93047
0.8 0.14562 1.23450
1.2 0.14563 1.34501

0.0 0.09986 0.09171
0.5 0.09990 0.08943
0.9 0.09993 0.08805

0.0 0.10037 0.09124
0.4 0.09787 0.09129
1.2 0.09636 0.09132
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er λ . Figures 6 and 7 are sketched to visualize the behavior of N  on ( )f η′  and ( )g η′ . Here 
larger N  result for an increment in ( )f η′ . For larger N  both ( )g η′  and momentum layer de-
cayed. Curves of dimensionless ( )θ η  with change in M  is elucidated in fig. 8. This figure re-
veals that ( )θ η  marginally increases as M  is enhanced. It is well known fact that magnetic field 
intensity tends to produced drag force which resists the liquid motion and ultimately the thermal 
field is elevated. Figure 9 is drawn to see the characteristics of δ  on ( )θ η . It is found that ( )θ η  
is augmented for larger .δ  Figure 10 is sketched to analyze behavior of Biot number γ  on 

( )θ η . It is concluded that ( )θ η  and related layer thickness are enhanced for larger γ . Figure 11 
demonstrates to analyze the behavior of Rd  on temperature ( )θ η . It is reported that ( )θ η  is 

Figure 3. Impact of ( )′g η via α Figure 4. Impact of ( )′f η via λ
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g
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ηη

(
)

f
η′

Figure 5. Impact of ( )′g η  via λ Figure 6. Impact of ( )′f η via N
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Figure 7. Impact of ( )′g η  via N Figure 8. Impact of ( )θ η via M
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enhanced for higher .Rd  Physically an increment in radiation promotes the heat flux which 
corresponds to rise in ( )θ η . Figure 12 elucidates that an increase in Prandtl number decays the 
thermal field. The fluid with higher Prandtl number is more viscous. The fluid with a higher 
viscosity has a lower temperature while the fluid with lower viscosity has higher temperature. 
Thus, an increase in Prandtl number leads to diminish ( )θ η . Impact of Soret number on ( )θ η  is 
depicted in fig. 13. There is reduction in ( )θ η  for higher Soret number. Temperature identifies 
increasing nature with intensity of Dufour number, see fig. 14. In fact Dufour number is in-
volved in energy expression by concentration gradient. Therefore ( )θ η  is enhanced with higher 
concentration gradient. Figures 15 and 16 are drawn to see the impacts of 1γ  for generative 

Figure 9. Impact of ( )θ η via δ Figure 10. Impact of ( )θ η via γ
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θ
η

η
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)

θ
η

Figure 11. Impact of ( )θ η via Rd Figure 12. Impact of ( )θ η via Pr
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θ
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Figure 13. Impact of ( )θ η via Sr Figure 14. Impact of ( )θ η via fD
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1( 0)γ <  and destructive 1( 0)γ >  chemical reactions for ( )φ η . Concentration field ( )φ η  reduc-
es with increment in destructive chemical reaction 1( 0)γ >  while it enhances in case of 1( 0).γ <  
Behavior of Schmidt number on ( )φ η  is presented in fig. 17. Schmidt number is the ratio of 
momentum diffusivity to the mass diffusivity higher Schmidt number lead to decay in mass 
diffusivity which in turn declines the concentration field. Figure 18 portrays the variation in 

( )φ η  for various Soret number. Here ( )φ η  is an increasing function of Soret number. Figure 19 
designates that higher Dufour number enhances the concentration and its related boundary-lay-
er thickness. Tables 1 perceives numerical data of Nusselt and Sherwood numbers Rd , ,γ  1,γ  
Sr, fD , and δ . Here we concluded that Nusselt number enhances for Rd , ,γ  and Sr. It is also 
noted that Sherwood numbers decay via ,γ  δ , and Sr.

Figure 15. Impact of ( )φ η via ≥1( 0)γ Figure 16. Impact of ( )φ η via ≤1( 0)γ

η η
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Closing remarks

Here we addressed the effects of Soret-Dufour and exponential space dependent inter-
nal heat source on MHD flow of viscoelastic liquid towards an exponentially stretched surface. 
Key results can be highlighted in the following bullets:

 y Similar feature of velocity profiles are noticed for larger λ  and .N
 y Radiation and heat source variables improves the temperature field.
 y Temperature is an increasing function of .M
 y Features of Soret and Dufour numbers on temperature and concentration are quite reverse.
 y Surface heat and mass transfer rates are augmented via .δ
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