NUMERICAL COMPUTATIONS ON FLOW AND HEAT TRANSFER OF CASSON FLUID DUE TO OSCILLATORY MOVING SURFACE

by

Sami ULLAH KHANa, Nasir ALIb, Tahir MUSHTAQc, Amar RAUFd,e,* and Sabir Ali SHEHZADa

a, Department of Mathematics, COMSATS Institute of Information Technology, Sahiwal 57000, Pakistan
b, Department of Mathematics and Statistics, International Islamic University, Islamabad, 44000, Pakistan.
c, Department of Mathematics, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan

Abstract: A numerical study of unsteady hydromagnetic flow of Casson liquid passed through the oscillatory moving surface is presented. The interaction of radiation term is reported in the energy equation. The flow is generated by the rapid movement of elastic surface that stretched back and forth periodically. The number of variables is reduced by introducing dimensionless variables. An implicit technique developed on finite difference algorithm is implemented to the system of partial differential equations. The impact of various parameters like Casson liquid parameter, the oscillation frequency and stretching rate ratio, Hartmann number and effective Prandtl number are shown through various graphs. The observation indicates that the amplitude of the velocity declines by enhancing Casson liquid parameter, oscillation frequency and stretching rate ratio and Hartmann number. The temperature declines by increasing Casson fluid parameter and effective Prandtl number. The results also indicate that the time-series of local Nusselt number increases by enhancing effective Prandtl number.

Keywords: Casson fluid; oscillatory moving sheet; heat transfer; finite difference technique

1. Introduction

Flow behavior of non-Newtonian materials has gained much interest among the researchers owing to their practical application in industry and engineering, particularly in the polymer technology. Unlike Newtonian fluids, such flow phenomena have a complex relation between the strain rate and shear stress. Non-Newtonian fluids are encountered in chemical and nuclear plants, bioengineering and material processing etc. Such fluids include polymer liquids, paper pulp, molten plastics, certain oils, foodstuff, shampoos, apple sauce, animal blood, paints, ketchup and slurries. The salient characteristics of such fluids cannot be described through a constitutive relationship. Therefore various flow models [1-9] have been presented in past decades to analyze significance characteristics of non-Newtonian fluids.

The most important class is the Casson fluid model. Such fluid is plastic fluid that displays thinning characteristics. If yield stress is higher than the shear stress, it acts as a solid while in opposite scenario we have a moving fluid. The model is applicable for liquids containing rods as solids and also valid for blood and molten chocolate. Walawender et al. [10] analyzed that the constitutive equations of Casson fluid described accurately flow characteristics of pigments suspensions in the lithographic varnishes, used

*Corresponding Author: raufamar@ciitsahiwal.edu.pk
for the preparation of silicon suspensions and printing inks. Many researchers investigated the flow model of Casson fluid by considering various geometrical aspects. Hayat et al. [11] computed analytic solution to analyze the flow behavior of Casson liquid. The steady flow of Casson liquid through a stretching/shrinking sheet by shooting technique has been reported by Bhattacharyya et al. [12]. The effects of chemically reactive flow of Casson liquid flowing to stretching surface was analyzed by Mukhopadhyay [13]. Shehzad et al. [14] reported the analytical study of Casson fluid through a stretching surface considering the impact of chemical reaction. Mukhopadhyay and Mandal [15] studied the flow characteristics of Casson fluid passed through porous wedge. Mustafa and Khan [16] presented the numerical investigations for flow of Casson nanofluid. Study concerning the flow characteristics using Casson fluid model can be found in [17–20].

Magnetohydrodynamics (MHD) has vital applications in physics, chemistry, engineering and medicine. Various industrial equipments like optical grating, fiber filters, optical switches, tunable optical filters and modulators, pumping machines, bearings, stretching of the plastic sheets and MHD generators are affected due to magnetic field and electrically conducting liquid interaction. In metallurgy the thinning and annealing of the copper wires, cooling of strips in the process of drawing are need to be stretched for the final product. The required quality in these situations strongly depends upon rate of cooling, which can be achieved by drawing the strips in an electrically conducting liquid. The occurrence of magnetic field has a significance role in controlling the momentum and transfer of heat in different types of fluid flows. The comprehensive review on magnetic field can be found in refs. [21-27].

The thermal radiations effects at high operating temperature are quite significant in the heat transfer phenomenon. It is well-accepted fact that several industrial and chemical engineering processes occurs at large temperature difference like glass fiber, gas turbines, filaments, hot rolling, solar power technology, aircrafts, nuclear plants, IC engines, propulsion devices, space vehicles and satellites. In such type of phenomenon, the importance of thermal radiation cannot be denied. The impact of thermally radiative flow of nanofluid past a curved stretching sheet was studied by Abbas et al. [28]. Hayat et al. [29] reported the analytical study of boundary layer flow of Carreau fluid encounter the impact of radiation. The model of thermally radiative flow owing to a curved sheet was presented by Hayat et al. [30]. Ample attempts have been made in this regard [31-36].

Fluid flow over stretching surfaces has attract investigators in last decades because of its abundant applications in engineering point of view such as paper production, rubber sheets extrusion, artificial fibers, paper production, melt-spinning etc. Many researchers devoted his time for flow problems by considering different types of surfaces. Among them the Oscillatory stretching surface is the most important one. Wang [37] initiated the fluid flow problem considering the oscillatory stretching sheet. He computed perturbation solution of the considered problem. Abbas et al. [38] studied the laminar flow of viscoelastic fluid owing to oscillatory stretching surface. The Wang’s problem is extended by Abbas et al. [39] for the analysis of heat transfer in electrically conducting viscous fluid. Soret-Dufour phenomenon of unsteady viscous liquid due to oscillatory moving surface has been reported by Zheng et al. [40]. Ali et al. [41] discussed the flow of Jeffrey fluid passed through oscillatory surface. A numerical solution for laminar viscoelastic second grade fluid due to oscillatory moving surface considering the
impacts of heat transfer was prescribed by Khan et al. [41]. The hydromagnetic flow of Couple stress fluid
over an oscillatory stretching sheet with absorption/generation effects was investigated by Ali et al. [43].
Our aim is to present a numerical analysis of unsteady radiative Casson liquid flow through oscillatory
sheet due to occurrence of magnetic field. This phenomenon is not presented till now in literature. The
structure of this article is problem formulation and flow analysis is made in section 2. Section 3 contains
the numerical computations for the solutions. The elaboration of graphical results is presented in section
4. Section 5 is made to elaborate the conclusions.

2. Flow Model
The problem of unsteady radiative Casson liquid flow through an oscillatory moving surface with the
effect of magnetic field is reported. We choose x-axis along sheet while y is perpendicular to it. At $t > 0$
, the surface is stretched and oscillates periodically (see Fig. 1). Let fluid maintains constant temperature
T_w near the sheet and temperature T_∞ away from it. The governing equations of flow are:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \quad (1)$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \nu \left(1 + \frac{1}{\beta} \right) \frac{\partial^2 u}{\partial y^2} - \frac{\sigma B_0^2}{\rho} u, \quad (2)$$

$$\rho c_p \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = k \frac{\partial^2 T}{\partial y^2} - \frac{\partial q_r}{\partial y}, \quad (3)$$

in which we denote u and v as velocity components, ν the kinematic viscosity, β the Casson liquid
parameter, ρ the liquid density, B_0 the strength of applied magnetic field, c_p the specific heat, k the
thermal conductivity, σ the electrical conductivity, T the temperature and q_r is the heat flux of
radiation.

Using the Rosseland approximation [28], we have

$$q_r = -\frac{4\sigma^* T^4}{3k^*}, \quad (4)$$

where σ^* is the Stefan Boltzmann constant and k^* is the absorption constant. For further analysis, we
assume that the temperature gradients within the flow are small. As an implication of this assumption the
term T^4 appearing in (4) may be linearized about the ambient temperature T_∞ using Taylor series to give

$$T^4 \approx T_\infty^4 + 4T_\infty^3 \left(T - T_\infty \right) + 6T_\infty^2 \left(T - T_\infty \right)^2 + \ldots. \quad (5)$$

Upon neglecting the higher-order terms, we get

$$T^4 \approx 4T_\infty^3 - 3T_\infty^4. \quad (6)$$

In view of (4) and (5), Eq. (3) takes the form

$$\rho c_p \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \left(k + \frac{16\sigma^* T_\infty^3}{3k^*} \right) \frac{\partial^2 T}{\partial y^2}. \quad (7)$$

The following boundary conditions are utilized:
\[u = u_w = b x \sin \omega t, \quad v = 0, \quad T = T_w \quad \text{at} \quad y = 0, \quad t > 0 \]
\[u \to 0, \quad T \to T_\infty \quad \text{as} \quad y \to \infty, \]

Introducing the appropriate variables [37-40]
\[
\xi = \sqrt{\frac{b}{v}} y, \quad \tau = t \omega, \quad u = b x f(x, \tau), \quad v = -\sqrt{v b}, f(\xi, \tau), \quad \theta(\xi, \tau) = \frac{T - T_w}{T_w - T_\infty}.
\]

In view of Eq. (9), we note that Eq. (1) satisfied and Eqs. (2) and (7) become:
\[
(1 + \frac{1}{\beta}) f_{\xi \xi} + S f_{\xi \tau} - f_{\xi}^2 + f_{\xi \xi} - M^2 f_{\xi} = 0,
\]
\[
\frac{1}{\Pr} (1 + N_r) \theta_{\xi \xi} + f \theta_{\xi} - S \theta = 0,
\]

where \(S = \omega / b \) the ratio of oscillation frequency and stretching rate on the surface, \(M = \sqrt{\sigma B_{\omega}^2 / \rho b} \) the Hartmann number, \(\Pr = \mu c_p / k \) the Prandtl number and \(N_r = 16 \sigma^2 T_w^3 / 3 k^2 k \) the radiative parameter. Eq. (10) become in view of [35]:
\[
\frac{1}{\Pr_{eff}} \theta_{\xi \xi} + f \theta_{\xi} - S \theta = 0.
\]

The associated boundary conditions take the following form:
\[
f(0, \tau) = \sin \tau, \quad f(0, \tau) = 0, \quad \theta(0, \tau) = 1, \quad f(\infty, \tau) \to 0, \quad \theta(\infty, \tau) \to 0
\]

The local Nusselt number in present case is
\[
Nu_x = \frac{x q_w}{k (T - T_w)}, \quad q_w = -k \left(1 + \frac{16 \sigma^2 T_w^3}{3 k^2} \right) \left(\frac{\partial T}{\partial y} \right).
\]

The dimensionless expression of local Nusselt number is:
\[
Re_x^{1/2} Nu_x^* = -\theta_y (0, \tau),
\]

where \(Re_x = u_w x / \nu \) is the local Reynolds number and \(Nu_x^* = Nu_x / (1 + N_r) \) is the effective local Nusselt number [35].

3. Numerical Solution

In order to find the approximate solution of Eqs. (10) and (12) with boundary conditions (13), a numerical based technique namely infinite difference scheme is implement. First the semi-infinite domain is truncated. The approximate solution is computed by truncating the semi-infinite domain. For this purpose the semi-infinite domain \(\xi \in [0, \infty) \) is transformed into finite domain \(\xi \in [0, H] \) and boundary conditions at infinity \(y \to \infty \) is endorsed at \(\xi = H \). It is remarked that the length of \(H \) is adjusted in such a way that any other amendment in its value does not considerably alter the solution [38, 39]. In this
paper coordinate transformation $\psi = 1/(\xi + 1)$ is suggested to transform the infinite physical domain $\xi \in [0, \infty)$ into a domain $\psi \in [0, 1]$

$$\xi = \frac{1}{\psi} - 1, \quad \frac{\partial}{\partial \xi} = -\psi^2 \frac{\partial}{\partial \psi}, \quad \frac{\partial^2}{\partial \xi^2} = \psi^4 \frac{\partial^2}{\partial \psi^2} + 2\psi^3 \frac{\partial}{\partial \psi}, \quad \frac{\partial^2}{\partial \xi \partial \tau} = -\psi^2 \frac{\partial^2}{\partial \psi \partial \tau},$$

$$\frac{\partial^3}{\partial \xi^3} = -\psi^6 \frac{\partial^3}{\partial \psi^3} - 6\psi^5 \frac{\partial^2}{\partial \psi^2} - 6\psi^4 \frac{\partial}{\partial \psi}.$$

Substituting above transformations in Eqs. (10) and (12), we have

$$S \frac{\partial^2 f}{\partial \psi^2} = \psi^2 \left(\frac{\partial f}{\partial \psi} \right)^2 - \left[6\psi^2 \left(1 + \frac{1}{\beta} \right) - 2\psi f - M^2 \right] \left(\frac{\partial f}{\partial \psi} \right) + \left[6\psi^3 \left(1 + \frac{1}{\beta} \right) - \psi^2 f \right] \left(\frac{\partial^2 f}{\partial \psi^2} \right)$$

$$+ \left(1 + \frac{1}{\beta} \right) \psi^4 \frac{\partial^3 f}{\partial \psi^3},$$

$$\frac{1}{Pr_{eff}} \left(\psi^4 \frac{\partial^2 \theta}{\partial \psi^2} + 2\psi^3 \frac{\partial \theta}{\partial \psi} \right) - \left(f \psi^2 \frac{\partial \theta}{\partial \psi} + S \frac{\partial \theta}{\partial \tau} \right) = 0,$$ \hspace{1cm} (17)

$$\begin{cases}
 f_\psi = 0, \quad \theta = 0 \quad \text{at} \quad \psi = 0 \\
 f = 0, \quad f_\psi = -\sin \tau, \quad \theta = 1 \quad \text{at} \quad \psi = 1.
\end{cases} \hspace{1cm} (18)$$

The numerical procedure is implemented in the following steps. We discretize Eqs. (15)-(17) for L uniformly distributed discrete points in $\psi = (\psi_1, \psi_2, ..., \psi_L) \in (0, 1)$ with a space grid size of $\Delta \psi = 1/(L + 1)$ and time level $\tau = (\tau_1, \tau_2, ..., \tau_n) = (\Delta \tau, 2\Delta \tau, ..., n\Delta \tau, ...)$, where $\Delta \tau$ is the time step size. Hence the discrete values $(f_1^n, f_2^n, ..., f_L^n)$ at these grid point for time levels $\tau^n = n\Delta \tau$ ($\Delta \tau$ is the time step size) can be numerically solved together with boundary points at $\psi = \psi_0 = 0$ and $\psi = \psi_{L+1} = 1$. The initial condition is assumed as

$$f^{(n)}(\psi, \tau = 0) = 0, \quad \theta^{(n)}(\psi, \tau = 0) = 0.$$ \hspace{1cm} (19)

Time difference semi-implicit scheme for the velocity and temperature profiles is:

$$S \frac{1}{\Delta t} \left(\frac{\partial f^{(n+1)}}{\partial \psi} - \frac{\partial f^{(n)}}{\partial \psi} \right) = \psi^2 \left(\frac{\partial f^{(n)}}{\partial \psi} \right)^2 + 6\psi^2 \left(1 + \frac{1}{\beta} \right) \frac{\partial f^{(n+1)}}{\partial \psi} - M^2 \frac{\partial f^{(n+1)}}{\partial \psi} - 2\psi f^{(n)} \frac{\partial f^{(n)}}{\partial \psi}$$

$$+ 6\psi^3 \left(1 + \frac{1}{\beta} \right) \frac{\partial^2 f^{(n+1)}}{\partial \psi^2} - \psi^2 f^{(n)} \left(\frac{\partial^2 f^{(n)}}{\partial \psi^2} \right) + \psi^4 \left(1 + \frac{1}{\beta} \right) \frac{\partial^3 f^{(n+1)}}{\partial \psi^3}$$

$$S \frac{\partial \theta^{(n+1)}}{\partial \psi} - \frac{\partial \theta^{(n)}}{\partial \psi} = \left(\psi^4 \frac{\partial^2 \theta^{(n+1)}}{\partial \psi^2} + 2\psi^3 \frac{\partial \theta^{(n+1)}}{\partial \psi} \right) - Pr_{eff} f^{(n)} \psi^2 \frac{\partial \theta^{(n+1)}}{\partial \psi}.$$ \hspace{1cm} (19)

The important feature of the scheme is that only linear equations at each new time step $(n+1)$ are to be solved. The resulting systems of algebraic equations for $f_i^{(n+1)}$ and $\theta_i^{(n+1)}$ at time step $(n+1)$ are solved by using Guassian elimination.
3.1. Validation of solution

In order to assess our solution, present outcomes are compared in Table 1 with available results contributed by noteworthy investigators [38,40]. It is seen that present results have favorable agreement with these studies. In Table 2, the present results are reduced for linear stretching as a special case [44,45]. It is observed that the results for linear stretching are achieved as a limiting case of this study.

Table 1: Comparison of $f''(0, \tau)$ with [38, 40] when $S = 1, M = 12, \beta \to \infty$.

<table>
<thead>
<tr>
<th>τ</th>
<th>Abbas et al. [38]</th>
<th>Zheng et al. [40]</th>
<th>Present Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau = 1.5\pi$</td>
<td>11.678656</td>
<td>11.678656</td>
<td>11.6786560</td>
</tr>
<tr>
<td>$\tau = 5.5\pi$</td>
<td>11.678707</td>
<td>11.678706</td>
<td>11.678708</td>
</tr>
<tr>
<td>$\tau = 9.5\pi$</td>
<td>11.678656</td>
<td>11.678656</td>
<td>11.678656</td>
</tr>
</tbody>
</table>

Table 2: Numerical values of $f''(0, \tau)$ for linear stretching with $S = 0, \beta \to \infty$ and $\tau = \pi/2$.

<table>
<thead>
<tr>
<th>M</th>
<th>Turkylmazoglu [44]</th>
<th>Hayat et al. [45]</th>
<th>Present results</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.000000</td>
<td>-1.000000</td>
<td>-1.000000</td>
</tr>
<tr>
<td>0.5</td>
<td>-1.22474487</td>
<td>-1.224747</td>
<td>-1.2247470</td>
</tr>
<tr>
<td>1</td>
<td>-1.41421356</td>
<td>-1.414217</td>
<td>-1.4142172</td>
</tr>
<tr>
<td>1.5</td>
<td>-1.58113883</td>
<td>-1.581147</td>
<td>-1.581147</td>
</tr>
<tr>
<td>2.0</td>
<td>-1.73205081</td>
<td>-1.732057</td>
<td>-1.7320575</td>
</tr>
</tbody>
</table>

4. Discussion of Results

The impacts of involved parameters namely Casson parameter, ratio of oscillation frequency to stretching rate of surface, Hartmann number and effective Prandtl number are discussed on f' and θ. Fig. 3(a-c) elaborates the curves of β, S and M on the time-evolution of f'. The variatation of velocity against time for various values of β is depicted in Fig. 3(a). we observed that amplitude of the velocity decline periodically by increasing Casson fluid parameter β. Physically, with increase in β the fluid become more viscous and in result the fluid velocity reduces. Fig. 3(b) reveals that amplitude corresponding to the flow behavior decays by enhancing S. It is observed that an increase in S results in a pronounced phase shift and decrease in the amplitude of oscillations. Fig. 3(c) illustrates the influence of Hartmann number with $S = 1, \beta = 1$. The investigation predicts that the velocity amplitude decline periodically for larger values of M. It is seen that fluid velocity reduces as M increases, as expected. It is due to the fact that drag force, also known as Lorentz force is produced when magnetic field is applied to the fluid. This force has the propensity to resist the velocity of fluid in the whole domain.

Fig. 4(a-d) displays the influence of dimensionless β on the transverse profile of f' at four different
distances \(\tau = 8.5\pi, \tau = 9\pi, \tau = 9.5\pi \) and \(\tau = 10\pi \) with fixed \(S = 12 \) and \(M = 1.0 \). In Fig. 4(a), the variation of \(\beta \) on \(f' \) at fixed time instant \(\tau = 8.5\pi \) is shown. The velocity component \(f' \) showing a decreasing tendency for higher \(\beta \). The momentum boundary layer thickness slightly decreases by increasing \(\beta \). It is examined that \(f' = 1 \) at \(y = 0 \) equating the surface velocity and \(f' \to 0 \) far away from the surface due to periodic motion of the sheet. For larger values of \(\beta \), the viscous affects become more dominant which results in decay of velocity. A small oscillation in velocity far away from the surface is attributed due to periodic motion of sheet. Fig. 4(b) is plotted at time instant \(\tau = 9\pi \) which shows that again the velocity decline close to the surface of sheet and after that a slight oscillation is observed before it approaches to zero. The variation of Casson fluid parameter \(\beta \) at time instant \(\tau = 9.5\pi \) is shown in Fig. 4(c). The magnitude of velocity is confined from -1 to zero for larger \(\beta \). The effects of \(\beta \) at time instant \(\tau = 10\pi \) are similar as we observed in Fig. 4(d).

The influence of various values of \(S \) on the dimensionless velocity component \(f' \) at four different distances \(\tau = 8.5\pi, \tau = 9\pi, \tau = 9.5\pi \) and \(\tau = 10\pi \) is described in Fig. 5(a-d). From Fig. 5(a) it is executed that velocity decays by increasing \(S \) at time instant \(\tau = 8.5\pi \). Fig. 5(b) illustrates the effects of \(S \) at time instant \(\tau = 9\pi \). We see that the velocity \(f' \) decline close to the surface of the sheet before approaching to zero. Again at time instant \(\tau = 9.5\pi \), the velocity of the fluid decreases (Fig. 5(c)). Fig. 5(d) reveals that at time instant \(\tau = 10\pi \), \(f' \) goes to zero at and far from sheet. At same time, we also revealed that the amplitude of back flow enhance by for larger \(S \). The negativity in \(f' \) near the surface corresponds to back flow. Fig. 6(a-d) demonstrates the effects of Hartmann number \(M \) on transverse profiles of velocity \(f' \) at four different distances by keeping \(S = 15 \) and \(\beta = 1 \). Fig. 6(a) illustrates the effects of \(M \) on velocity profile at time instant \(\tau = 8.5\pi \). The velocity \(f' \) is found to be decreased with increasing \(M \). It is noted that the applied magnetic field creates a resistive force known as Lorenz force which decelerates the fluid flow and results in a thinner boundary layer. This result has prime importance where a reduction in velocity and boundary layer thickness are required. Now at time instant \(\tau = 9\pi \), the velocity oscillates near the surface and finally approaches to zero (Fig. 6(b)). Fig. 6(c) shows the effects of Hartmann number on velocity profile at time instant \(\tau = 9.5\pi \). The velocity decreases for higher values of \(M \). The effects of Hartmann number on velocity at another time instant \(\tau = 10\pi \) are similar to Fig. 6(b).

The influence of \(\text{Pr}_{\text{eff}}, S \) and \(\beta \) on the temperature field \(\theta \) are illustrated in Fig. 7(a-c). In Fig. 7(a), the temperature field is observed to be diminished for increasing values of Prandtl number \(\text{Pr}_{\text{eff}} \) since thermal diffusivity decreases for greater values of \(\text{Pr}_{\text{eff}} \). This decline in temperature inside the boundary layer by by increasing \(\text{Pr}_{\text{eff}} \) is attributed to the fact that \(\text{Pr}_{\text{eff}} \) is directly proportional to Prandtl number \(\text{Pr} \) and inversely proportional to radiation parameter.

The response of temperature profile \(\theta \) with a range of values of \(S \) is depicted in Fig. 7(b). The temperature profiles showing a decreasing tendency throughout the region of boundary layer by increasing \(S \). The effects of Casson fluid parameter \(\beta \) on temperature profile are shown in Fig. 7(c). It is noted that the temperature profile decreases for by increasing Casson fluid parameter \(\beta \). In fact by increasing \(\beta \), the resistance offered by elasticity of the fluid to its flow increases and as a result of which an increase in temperature inside the thermal boundary layer is observed. Moreover, a decrease in the
relevant thermal boundary layer thickness is note due to enhancing β. However, this rate of change of heat transfer is minimal as compared with Fig. 8(a)-(b).

The influence of \Pr_{eff} and S on θ is shown in Fig. 9(a-b). Fig. 9(a) reveals that time-series of the temperature profile decreases by increasing the effective Prandtl number \Pr_{eff}. There exists a small oscillation in the temperature for larger values of effective Prandtl number. Similar observation has been examined in Fig. 9(b) i.e. time-series of temperature profile decreases by increasing S. Finally, the variation of effective local Nusselt number with time for various values of \Pr_{eff} and S are illustrated in Fig. 8(a-b). It is seen that the effective local Nusselt number increases by enhancing \Pr_{eff} and S.

5. Concluding remarks

We have investigated the numerical problem of MHD radiative Casson liquid over an oscillatory surface through the implementation of implicit finite difference criteria. The influence of emerging parameters is plotted graphically. The investigation predicts that the amplitude of velocity decays periodically for larger values of β, S and M. Velocity profiles decline for higher values of β, S and M. Temperature decreases by increasing \Pr_{eff}, S and β. The time-series of local Nusselt number increases by enhancing \Pr_{eff} and S.

Fig.1: Geometry of problem

\[
\begin{align*}
T \rightarrow T_\infty, \\
C \rightarrow C_\infty, \\
\bar{y} \\
\bar{x} \\
T = T_\infty, C = C_\infty, \\
u_w = b \bar{x} \sin \omega t \text{ at } \bar{y} = 0
\end{align*}
\]
Estimation of difference approximations for $f^{(n)}(\psi, \tau), \theta^{(n)}(\psi, \tau)$

Solving Eqs. (16) and (17)

Calculate $f(\psi, \tau), \theta(\psi, \tau)$

Achieve desired accuracy

No Yes

Finish

Fig. 2: The flow chart of the numerical method
Fig. 3. Time series of velocity: (a) effects of β (b) effects of S (c) effects of M.

Fig. 4. Effects of β on velocity.
Fig. 5. Effects of S on velocity

Fig. 6. Effects of M on velocity
Fig. 7. Effects of (a) Pr_{eff} (b) S (c) β on temperature.

Fig. 8. Variation of temperature with time for various values of (a) Pr_{eff} (b) S
Fig. 9. Variation of local Nusselt number with time for various values of (a) Pr_{eff} (b) S

Acknowledgments

We are thankful to the anonymous reviewer for his/her useful comments to improve the earlier version of the paper.

References

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>u, v</td>
<td>velocity components</td>
</tr>
<tr>
<td>β</td>
<td>Casson liquid parameter</td>
</tr>
<tr>
<td>B_0</td>
<td>strength of applied magnetic field,</td>
</tr>
<tr>
<td>k</td>
<td>thermal conductivity,</td>
</tr>
<tr>
<td>T</td>
<td>temperature and</td>
</tr>
<tr>
<td>σ^*</td>
<td>Stefan Boltzmann constant</td>
</tr>
<tr>
<td>T_∞</td>
<td>ambient temperature</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number</td>
</tr>
<tr>
<td>Pr_{eff}</td>
<td>effective Prandtl number</td>
</tr>
<tr>
<td>Re_x</td>
<td>local Reynolds number</td>
</tr>
<tr>
<td>f/ ν</td>
<td>dimensionless velocity</td>
</tr>
</tbody>
</table>

*ν kinematic viscosity

*ρ liquid density

*c_p specific heat,

*σ electrical conductivity,

*q_r heat flux of radiation

k^ absorption constant

*$M = \sqrt{\sigma B_0^2 / \rho b}$ Hartmann number

$N_r = 16\sigma^ T_\infty^3 / 3k^* k$ radiative parameter

Nu_x^ effective local Nusselt number

*θ dimensionless temperature