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The hydromagnetic-flow in sinusoidally heated porous channel is studied by uti-
lizing Darcy-Forchiemmer law with Joule heating effect. The Darcy’s resistance 
term in the momentum equation is acquired by using modified Darcy’s law. The 
governing equations for flow velocity, temperature, and mass concentration are 
developed under lubrication approximation, commonly known as long wavelength 
assumption in the realm of peristaltic flows. A well-tested implicit finite difference 
scheme is employed to solve the set of these equations along with appropriate 
boundary conditions. The governing equations involve important parameters 
namely, Forchiemmer parameter, dimensionless radius of curvature, permeability 
parameter, Hartmann, Brinkmann, Schmidt, and Soret numbers. The effect of these 
important parameters on velocity, temperature and mass concentration is illustrat-
ed through graphs. The pressure-flow rate relationship and streamlines are also 
shown. The presence of porous matrix inside the channel impedes the flow velocity 
and reduces the peristaltic transport and mingling. Moreover, temperature of the 
fluid rises with decreasing permeability of porous-matrix and Hartmann number. 
Key-words: Joule heating, hydromagnetic, porous media,  

Reynolds number, Darcy law

Introduction

In fluid dynamics, the flow due to sinusoidal motion of the vessel walls is known as 
peristaltic flow. The rythmatic contractions and relaxations of smooth muscles of the vessel 
produce peristaltic motion. Peristaltic flows are found in numerous physiological and industrial 
processes. The food in digestive system, urine from kidneys to the bladder, chyme in small in-
testine and blood in small blood vessels are transported in human body according to peristaltic 
mechanism. Industrial applications of peristalsis can be found in diabetic pumps, heart-lung 
machine, roller and finger pumps, etc. Several theoretical and experimental studies have been 
carried out in past to investigate the fluid dynamics of this mechanism.

The first comprehensive study of peristaltic transport was carried out by Shapiro et al. 
[1] under long wavelength and low Reynolds number assumptions in wave frame of reference. 
They modeled the flow in both channel and axisymmetric tube using Navier-Stokes equations. 
Fung and Yih [2] dropped the assumptions of long wavelength and low Reynolds number and 
analyzed the peristaltic flow in fixed frame of reference. The approach of Shapiro et al. [1] 
was extended by several authors to include non-Newtonian effects [3-7], slip effects [8-10] 
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and electro-osmotic effects [11]. The important phenomena of heat and mass transfer have also 
been investigated in peristaltic flows by several authors with a motivation of its applications 
in hemodialysis, laser therapy and cryosurgery. Moreover, in various peristaltic pumps, heat 
transfer phenomena plays a vital role and is strongly affected by the peristaltic flow field. The 
interaction of heat transfer and peristaltic flow of Newtonian and non-Newtonian fluids has 
been reported in different geometrical set-ups. For instance, Vajravelu et al. [12] studied heat 
transfer in peristaltic flow through a porous vertical annulus. Mekheimer and Abd Elmaboud 
[13] discussed the heat transfer on peristaltic flow in a vertical annulus under long wavelength 
and low Reynolds number approximations. Ali et al. [14] analyzed the curvature effects on 
heat transfer for peristaltic flow of Newtonian fluid in a curved channel. Tripathi et al., [15] 
presented the mathematical model to describe the effects of heat transfer on dynamics of food 
bolus through the esophagus. When heat and mass transfer occur simultaneously in a moving 
fluid, then it affect many transport processes present in nature and also the applications relating 
to science and engineering. In processes such as the flow in a desert cooler, energy transfer in 
a cooling tower, evaporation, and drying, heat and mass transfer occur simultaneously. Eldabe 
et al. [16] has studied the problem of peristaltic transport of a non-Newtonian fluid with vari-
able viscosity in the presence of heat and mass transfer between vertical walls. Srinivas and 
Kothandapani [17] examined the effects of heat and mass transfer on peristaltic transport in 
a porous space with compliant walls. Hayat el al. [18] studied the effect of wall properties on 
peristaltically driven flow of third grade fluid in a curved channel with heat and mass transfer. 
Srinivas et al. [19] observed the effect of mixed convective heat and mass transfer on peristaltic 
flow in an asymmetric channel.

Recently, Ahmed et al. [20] investigated the effects of heat and mass transfer on the 
peristaltic flow of Sisko fluid in a curved channel. The aforementioned attempts regarding heat/ 
mass transfer in peristaltic flow are also based on the approach of Shapiro et al. [1]. On other 
hand, the analysis of Fung and Yih [2] is only generalized to include compressibility effects 
[21-26].

Porous medium is a stuff that contains spaces between solid areas through which fluid 
can pass. The flow of fluid through a porous media is a subject of most common interest and 
has emerged as separate field in the realm of fluid-flows. In the recent years considerable inter-
est has been noticed to the study of viscous flows through porous media because of its natural 
occurrence and its importance in industrial geophysical and medical applications. Some prac-
tical problems involving such studies include the extraction and filtration of oil from wells, the 
drainage of water for irrigation, the percolation of water through solids and the seepage through 
slurries in drains by the sanitary engineer, the flow of oils through porous rocks, the extraction 
of energy from geo-thermal regions, the flow of liquids through ion-exchange beds, cleaning of 
oil-spills, etc., are some of the areas in which flows through porous media are noticed. The flow 
through the porous media is usually studied utilizing Darcy’s law which linearly relates flow ve-
locity and pressure gradient through the porous medium. Permeability of the porous medium is 
an important parameter in the Darcy’s relation. Two important extension of Darcy law can also 
be found in the literature, namely, Darcy-Forchiemmer law and Darcy-Forchiemmer extended 
law which non-linearly relate the flow velocity and pressure drop. The foremost contribution 
on flows through porous media was made by Brinkman [27], who calculated the viscous force 
exerted by a flowing fluid through a porous media. Peristaltic flows through porous medium is 
also an active area of research. Several authors contributed to this area. Mention may be made 
to the work of El Shehawey [28], Mekheimer [29], Kothandapani et al. [30], and Hayat et al. 
[31] in various scenarios.
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The MHD is the study of dynamics of conducting fluids in the presence of an ap-
plied magnetic field. Examples of MHD fluids are plasma, blood, liquid metals, and salt or sea 
water. The equations describing MHD fluids are the combination of Navier-Stokes equations 
and Maxwell equations of electromagnetism. Wang et al. [32] thoroughly studied the effects 
of magnetic field on peristaltic flow of Sisko fluid in symmetric or asymmetric channel. Ha-
yat and Hina [33] described the influence of wall properties on the MHD peristaltic flow of a 
Maxwell fluid with heat and mass transfer. Tripathi and Beg [34] examined various features 
of MHD flow through a finite length channel by peristaltic pumping. Reddy [35] investigated 
the effects of magnetic field and porous medium in peristaltic slip flow with heat and mass 
transfer. The effect of homogenous/ heterogeneous reaction and thermal slip in non-isothermal 
MHD flow of third order in an irregular porous-saturated channel are also discussed by Reddy 
[36]. Reddy and Makinde [37] investigated MHD peristaltic flow of Jeffrey nanofluid in an 
asymmetric inclined channel. Heat transfer analysis in rotating MHD peristaltic flow of Jeffrey 
fluid in an asymmetric channel is carried out by Reddy et al. [38]. Peristaltic motion of reacting 
and rotating couple stress fluid in inclined asymmetric channel is also studied by Reddy et al. 
[39]. Carreau and Casson models are integrated by Reddy et al. [40] to describe the effects of 
nanoparticles in hydromagnetic radiative peristaltic flow in an irregular channel. More recently, 
Makinde et al. [41] discussed the radiation effects on hydromagnetic-flow of Walter-B fluid in 
presence of heat source and slip conditions. 

Joule heating appears due to the resistance offered to electric current while passing 
through some material. There are number of systems in which Joule heating effect has vital 
role such as dielectrophoretic trapping, electric fuses, PCR reactors, hot plate, microvalves 
for fluid control, electric heaters and stoves, thermistors and soldering irons, etc. On the 
other hand in some mechanism it generates undesired heat which can degenerate or melt the 
machinery parts, may create denaturation of biological samples like DNA, flopping of chip 
systems and bubble formation, etc. Such undesired effects of Joule heating can be controlled 
to some extent. A number of studies describe the joule heating effect on peristalsis. For detail 
see [42-44].

In all the cited literature, the peristaltic flow is modeled for planar channel, axisym-
metric tube, curved channel or a rectangular duct. Moreover the studies pertaining to peristaltic 
flow in curved channel are limited to flow and heat transfer analysis. Less attention is focused 
to analyze the flow and heat/ mass transfer characteristics in porous-saturated curved channel 
with Joule heating effect. With aforementioned facts in mind, the aim of this article is to model 
the problem of flow and heat/mass transfer in a curved channel in presence of porous media and 
Joule heating effects. The system of equations is developed for the case when wave number is 
vanishingly small. A well-tested finite difference scheme is employed for the solution. Impact 
of pertinent parameters on physical quantities of interest are discussed in detail.

Mathematical formulation 

Consider a curved channel of width 2w coiled in a circle having radius R0 and center 
O. A homogenous fluid-flows inside the porous-saturated channel due to the sinusoidal defor-
mation of the channel walls. The flow is also subjected to an applied magnetic field in the radial 
direction. Let c be the speed of the waves propagating along the channel walls while a and b 
denote the amplitudes of the upper and lower walls of the channel, respectively. The upper and 
lower walls of the channel are maintained at constant temperature T0 and T1, respectively. Simi-
larly, C0 and C1 specify the mass concentration at upper and lower walls, respectively. The flow 
can be well described in a curvilinear co-ordinate system (R, χ, Z), in which R is oriented along 
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radial direction, χ is along the flow direction, 
and Z is perpendicular to the plane spanned by 
R and χ. The geometry and co-ordinate system 
are illustrated in fig. 1. The shape of both walls 
is described mathematically:

 – upper wall

( ) ( )1
2, sin *H t w a ctχ χ
λ

  π
      

= + − (1)

 – lower wall

( ) ( )2 *

2, sinH t w b ctχ χ
λ

  
    

π= − − − (2)

where λ* is the wavelength and t – the time. 
It is intended to determine the flow, temperature and concentration fields. Due to com-

plex nature of transport process in porous medium, the present work is based on simplified 
mathematical model with the following assumptions:

 – The medium is homogenous and solid material does not chemically interact with the per-
meating fluid.

 – The medium is isotropic.
 – The fluid is assumed as a continuum.
 – The fluid is single phase and obeys classical Newtonian constitutive equation. The density 

of fluid is constant i. e., fluid is incompressible. 
 – No heat source or sink exist in the channel. Moreover, thermal radiation effects are negli-

gible. 
 – The solid matrix is in a local thermal equilibrium with the fluid. 
 – The walls of the channel are non-compliant. 
 – Flow is laminar with negligible gravitational effects. 
 – Magnetic Reynolds number is assumed small and hence effects of induced magnetic field 

are negligible.
 – Joule heating and Soret effects are taken into account.

In view of previous assumptions the equations governing the flow, heat, and mass 
transfer:
 – continuity equation 

=0∇⋅U (3)
 –   momentum equation

* *

d
d

CE
t k k

µ ρρ τ= ∇⋅ − ×U U U U + J B− (4)

 –   energy equation 

( )
2 2

2 20
2

d +p
B RTc k T U

dt R R

σρ µ= ∇ Φ+
+





(5)

 –  mass concentration equation
2 2d +

d m

DKC D C T
t T
= ∇ ∇T (6)

Figure 1. Physical sketch of  
peristaltic flow regime
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where U is the velocity, τ – the Cauchy stress tensor, T – the temperature, CE – the dimen-
sionless form-drag constant, C – the mass concentration, cp – the specific heat at constant 
pressure, k* – the permeability of porous medium, µ – the viscosity of porous medium,  
k – the thermal conductivity (assumed constant), D – the coefficient of mass diffusivity, 
KT – the thermal diffusivity, Tm – is the mean temperature, Φ – the dissipation function,  
σ – the Stefan-Boltzman constant, and ρ – the fluid density. The form of the radial magnetic 
field B:

*

ReB R
R R

 
  
 

=
+

B




(7)

where B*is the characteristic magnetic induction in the limit R~ → ∞ and eR – the unit vector in 
the radial direction. It is pointed out here that the magnetic field given by eq. (7) is solenoidal 
and satisfies Maxwell’s equations.

Using eq. (7), the term J × B in eq. (4) is given [7]:

( )
*2 2

2
X2 eB U R

R R

σ
 
 
 
  

⋅ = −
+

J B




(8)

where eX is the unit vector in the azimuthal direction.
Assuming:
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The boundary conditions associated with eqs. (9)-(13) [14]:
1

2 1 0 0 10, , , at  ( , ) HU U T T C C R H t
t

χ∂= = = = =
∂

(14)

2
2 1 1 1 20, , , at ( , )HU U T T C C R H t

t
χ∂= = = = =

∂
(15)

In order to shift from fixed frame (R, χ) to wave frame (r, x), we employ the transfor-
mations:

1 2 2, , , , ,1x ct r R p P u U u U c T Tχ= − = = = = − = (16)
After making use of aforementioned transformations, the governing equations in the 

wave frame obtained. These equations after defining the dimensionless variables:
2 2
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and invoking long wavelength and low Reynolds number assumption (δ ≈ 0, Re ≈ 0) reduces to:
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( ) ( )
2 2

2 2

1 1SrScφ φ θ θ
γ η η γ η ηη η

   
   
      

∂ ∂ ∂ ∂+ = − +
+ ∂ + ∂∂ ∂

(20)

In previous equations Re is the Reynolds number, δ – the wave number, γ – the di-
mensionless radius of curvature, F0 – the Forchiemmer parameter, and K* – the dimensionless 
permeability parameter, respectively. The stream function ψ and velocity components u1 and u2 
are related:

1 2,u u
x

γ ψ ψδ
η γ η

∂ ∂
= = −

+ ∂ ∂
Elimination of pressure between eqs. (17) and (18):

2
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The boundary conditions (14) and (15) transform:

1, 1, 0, 0, at 1 sin
2
q h xψψ θ φ η λ

η
∂= − = = = = = +
∂ (22)

2, 1, 1, 1, at 1 sin
2
q h xψψ θ φ η λ

η
∂ ′= = = = = = − −
∂ (23)

where λ = a/w and λ′ = b/w are the amplitude ratios. In summary, we have to solve eqs. (19)-(21) 
subject to boundary conditions (22) and (23). 

The physical quantities of interest such as pressure rise per wave length friction, Δp, 
forces, heat transfer coefficients at both the wall zi(i = 1, 2) and Sherwood number at both the 
wall Shi (i = 1, 2) are defined [8, 13]:

2

0

d d
d
pp x
x

π

∆ = ∫ (24)

2 2

1 2
0 0

d dd , d
d du lF h F hp px x
x x

π π

= − = −∫ ∫ (25)

, 1,2
i

i
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hz i
x h

θ
η η

∂ ∂= =
∂ ∂ =

(26)

Sh , 1, 2.
i

ih
i

x h

φ
η η

∂ ∂
= =
∂ ∂ =

(27)

Now, in order to solve eqs. (19)-(21) an implicit finite difference technique is em-
ployed for the solution. 

Method of solution

In this part, we briefly describe the finite difference scheme used for the solution of 
eqs. (19)-(21) subject to boundary conditions given in eqs. (22) and (23). In this procedure the 
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original non-linear boundary value problem is converted into a linear one at the (m + 1)th iterative 
step. For this particular problem, the following iterative procedure:

( ) ( ) ( )

( )

4 ( 1) 3 ( 1) ( ) 2 2 2 ( 1)
0

4 3 * 2*

( ) 2 2 ( 1)
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where the index (m) shows the iterative step. 
 In the next step, we insert finite difference approximations of ψ(m + 1), θ(m + 1), ϕ(m + 1),  

and their derivatives into eqs. (28)-(30). In this way, we get a system of linear algebraic equa-
tions at each iterative step. These algebraic equations are solved at each cross-section get nu-
merical results of ψ(m + 1), θ(m + 1), and ϕ(m + 1). It is important to note that, suitable initial guesses 
are required for ψ(m), θ(m), and ϕ(m), at each cross-section start the iterative procedure. For pres-
ent computation, linear initial guesses (only satisfying the Dirichlet boundary conditions) are 
used. The iterative procedure at each cross-section is carried out until a convergent solution is 
reached. The convergent solution is obtained rapidly by method of successive under-relaxation. 
In this method the values of ψ~ (m + 1), θ

~(m + 1), and ϕ
~(m + 1) at (m+1)th iterative step are used to define 

convergent values ψ(m + 1), θ(m + 1), and ϕ(m + 1) at the same step as:
( ) ( )

( ) ( )

( ) ( )

1 1( ) ( )

1 1( ) ( )

1 1( ) ( )

m mm m

m mm m

m mm m

ψ ψ τ ψ ψ

θ θ τ θ θ

φ φ τ φ φ

+ +

+ +

+ +

 = + − 
 = + − 
 = + − 







where τ is under relaxation parameter usually assumed small. In present computation the itera-
tive procedure is terminated after achieving the values of ψ, θ, and ϕ convergent to 10–8. 

Algorithm validation

Before embarking on the physical interpretation of the obtained results it is better to 
validate our results by comparing them with the existing results in the literature. To this end, 
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we have prepared figs. 2 and 3. Figure 2 presents a comparison of velocity profile u(η) com-
puted using present numerical scheme for K*→ ∞ , Ha = 0, γ = 2, λ = 0.4, x = 0, θ = 1 (solid 
line) with the velocity profile given in fig. 3 of [5] corresponding to k = 2, ϕ = 0.4, x = 0, and  
θ = 1 (superimposed dots). Clearly, both curves coincide showing an excellent agreement be-
tween our results with the existing ones. Figure 3 shows a comparison of temperature profile, θ(η), 
based on our numerical scheme for λ = 0.4, x = 0, γ = 2, and Θ = 1 (solid line) with the temperature 
profile in fig. 4 of [14] corresponding to Θ = 1, ϕ = 0.4, x = 0, k = 2 (superimposed dots). Again, 
an excellent correlation is achieved which clearly testifies validity our numerical results. 
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Figure 2. Comparison of present results for 
velocity (solid line) with the results for velocity 
reported in [5] (superimposed line) 

Figure 3. Comparison of present results for 
temperature (solid line) with the results for 
temperature reported in [14] (superimposed line)

Computational results and their interpretation 

In this section, we interpret the graphical results provided in figs. 4-28 to analyze 
some significant features of the peristaltic motion such as flow characteristics, pumping char-
acteristics, temperature distribution, mass concentration, and trapping phenomenon for var-
ious values of the parameters curvature parameter, γ, Forchiemmer parameter, F0, Brinkman 
number, Br, and permeability parameter, K*. The variation of friction forces and heat and mass 
transfer coefficients at both upper and lower walls is also shown. 

The axial velocity distribution for some specific values of Forchiemmer parameter, F0, 
permeability parameter, K*, Hartmann number, Ha, and curvature parameter, γ, is shown in figs. 
4-7, respectively. Figure 4 shows that axial velocity is suppressed with increasing Forchiemmer 
parameter. With increasing Forchiemmer parameter, the velocity profile becomes asymmetric 
with maximum appearing below the curve η = 0. The Forchiemmer parameter is the ratio of sol-
id-liquid interaction of viscous resistance. Larger values of F0 correspond to the situation when 
viscous resistance is smaller in comparison resistance due to the solid obstacles. Therefore, the 
suppression of velocity amplitude observed in fig. 4 for larger values of F0 is attributed to the 
increase in resistance due to the solid obstacles. Figure 5 shows the effects of permeability pa-
rameter on velocity, u2. Smaller values of K*correspond to weaker porous medium effects while 
larger values represent the case when resistance due to porous matrix is strong. It is observed 
that larger values of K* impede the velocity amplitude and shift the maximum velocity away 
from the lower wall of the channel towards the central line, η = 0. Figure 6 demonstrates the 
effects of applied magnetic field on the flow velocity. Here it is quite obvious that flow veloc-
ity exhibits boundary-layer character for larger values of Hartmann number. In fact for large 
values of Hartmann number, the disturbance in flow velocity is confined in thin layer near both 
upper and lower walls. The fluid outside the boundary-layer moves with a velocity which var-
ies linearly with radial co-ordinate, η. In contrast, the fluid outside the boundary-layers moves 
with constant velocity in a straight channel. It is further noted from fig. 6 that the axial velocity 
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for moderate values of Hartmann number recaptures its symmetric profile. The boundary-lay-
er character exhibited by the flow velocity is due to resistive nature of magnetic force. This 
resistance due to magnetic force suppresses the flow in the vicinity of the channel center. In 
order to maintain the prescribed mass flux, the velocity near the boundary walls will rise. The 
simultaneous occurrence of both these phenomena leads to the function of boundary-layer at 
the channel walls. Figure 7 depicts the effects of dimensionless radius of curvature, γ, on veloc-
ity distribution. For smaller values of γ the velocity is asymmetric about η = 0 with maximum 
appearing in the lower half of the channel. The asymmetry in flow velocity is due to the pressure 
accelerated fluid layers near lower wall of channel due to curvature. With increasing γ, the ve-
locity regains its symmetry about η = 0. This is expected because for large values of γ channel 
becomes straight.
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Figure 4. The u2(η) for various values of  
F0 with γ = 1.5, K* = 2, Ha = 0.5, λ = 0.4,  
and Θ = 1.5  

Figure 5. The u2(η) for various values of K*  
with γ = 1.5, F0 = 2, Ha = 0.5, λ = 0.4  
and Θ = 1.5

Figures 8-11 demonstrate the effect of different parameters on pressure rise per wave-
length. Figure 8 depicts the effects of Forchiemmer parameter on Δp. No peristaltic pumping 
region can be identified from this figure. The maximum pressure rise against which peristalsis 
has to work (i. e., Δp corresponding to θ = 0) is zero. This clearly indicate that for suitable 
choice of involved parameters the resistance offered by pressure gradient to peristaltic flow can 
be avoided. The profile of pressure rise per wavelength for different values of K* (permeability 
parameter) is shown in fig. 9. Here, it is noted that in peristaltic pumping region (Θ > 0, Δp >0) Δp 
increases with decreasing the permeability of the porous medium for a fixed value of prescribed 
flow rate. Thus, in the present settings the porous medium inside the channel hampers the nor-
mal flow of the fluid and peristalsis has to do greater work against the pressure rise to maintain 
the same flux as in the case of clear medium inside the channel. This eventually reduces the 
pumping efficiency. Figures 10 and 11 are plotted to see the variation of Δp against dimension-
less mean flow rate, Θ, for various values of Hartmann number and γ, respectively. In pumping 
region (Θ > 0, Δp >0) pressure rise per wavelength increases, by increasing Hartmann number. 
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Figure 6. The u2(η) for various values of Ha  
with γ = 1.5, F0 = 2, K* = 0.2, λ = 0.4, and Θ = 1.5

Figure 7. The u2(η) for various values of γ with  
K* = 0.2, F0 = 2, Ha = 0.2, λ = 0.4, and Θ = 1.5
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Figure 11. The Δp for various values of γ  
with Ha = 0.2, K* = 0.5, γ = 2, and λ = 0.4

The situation is different in free pumping (Δp = 0) and co-pumping region (Θ > 0, Δp < 0). Here 
Δp decreases by increasing Hartmann number. Figure 11 shows that Δp in pumping region de-
creases in going from curved to straight channel below a certain critical value of Θ. Above this 
critical value a reverse trend is observed. This reverse trend also prevails in free pumping and 
co-pumping regions. The fiction forces at upper and lower walls denoted by Fu and Fl, respec-
tively, for different values of Forchiemmer parameter, permeability parameter, and Hartman 
number are shown in figs. 12-14. It is observed that the behavior of friction forces is opposite 
to that of pressure rise. Moreover, they resist the flow in the pumping region and magnitude of 
resistance increases with increasing permeability parameter and Hartmann number. However, 
the resistance due to friction forces in pumping region decreases with increasing Forchiemmer 
parameter. Further, resistance at lower wall is greater than at upper wall.
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Figure 12. Friction forces at upper and lower 
walls for various values of F0 with Ha = 0.2,  
K* = 0.5, γ = 2, and λ = 0.4

Figure 13. Friction forces at upper and lower 
walls for various values of K* with F0 = 2,  
γ = 2, and λ = 0.4

The radial distribution of temperature of the fluid inside the channel for different values of 
Brinkmann number, permeability parameter, Hartman number, and Forchiemmer parameter is 
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shown in figs. 15-18. Here it is noted that the ef-
fect of Br, K*, and Ha is to increase the fluid tem-
perature inside the channel while the effect of CE 
is quite opposite. It is observed that an increase in 
Forchiemmer parameter impedes the fluid motion 
only in the vicinity of the channel and velocity 
over rest of the cross-section is unaffected with 
change in CE. Due to this reason the heat transfer 
rate from boundaries to the fluid is reduced and 
the fluid temperature is decreased inside the chan-
nel with increasing Forchiemmer parameter. 
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Figure 16. Profile of temperature θ(η) for various 
values of K* with F0 = 2, Br = 2, λ = 0.4, γ = 2, and  
Θ = 1.2
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Figure 17. Profile of temperature θ(η) for 
various values of Ha with F0 = 2, Br = 2, λ = 0.4, 
γ = 2, and Θ = 1.2

Figure 18. Profile of temperature θ(η) for various 
values of F0 with Br = 2, λ = 0.4, γ = 2, and Θ = 1.2

The variations of heat transfer coefficient z at both walls for different values of F0, 
Ha, and Br are shown through fig. 19. The profiles of z are clearly oscillating (periodic) due to 
periodic oscillating nature of the boundary walls. The amplitude of oscillation increases with 
increasing F0, Ha, and Br. The profiles of mass concentration inside the channel with several 
values of Br, K*, Ha, and F0 are shown in figs. 20-23. It is observed that the behavior of mass 
concentration is similar to behavior of temperature i. e. mass concentration inside the channel 
increases with increasing Br, K*, and Ha while its magnitude reduces with increasing F0. The 
effects of Forchiemmer parameter, Hartmann number, and Brinkmann number on Sherwood 
number at both walls are shown through fig. 24. It is observed that Sherwood number also ex-
hibits oscillatory behavior and its amplitude at both walls increases with increasing F0 and Br. 
In contrast, the amplitude at lower wall (upper wall) decreases (increasing) with increasing the 
strength of the applied magnetic field.

Figure 14. Friction forces at upper 
and lower walls for varous values of 
Ha with F0 = 2, γ = 2, and λ = 0.4
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Figure 21. Variation of mass concentration ϕ for 
K* with Br = 2, Sr = 0.5, Sc = 0.2, λ = 0.4, and γ = 2

–1 –0.5 0 0.5 1

Ha = 1, 2, 3, 4, 5
3

2

1

0

–1

ф
[

]
η

η      
–1 –0.5 0 0.5 1

10

8

6

4

2

0

–2

F0 = 1, 4, 7, 10, 13

ф
[

]
η

η

Figure 22. Variation of mass concentration  
ϕ for Ha with Br = 2, Sr = 0.5, Sc = 0.2,  
K* = 0.5, λ = 0.4, and γ = 2

Figure 23. Variation of mass concentration  
ϕ for F0 with Br = 2, K*= 0.5, Sr = 1.5, Sc = 1.2,  
λ = 0.4, and γ = 2

The streamline of flow inside the channel for different values of Forchiemmer param-
eter, permeability parameter, Hartman number, and curvature parameter are shown in figs. 25-
28. These plots have been prepared to examine the trapping phenomenon in which a volume of 
the fluid is trapped within closed streamlines. This volume of fluid is often termed as bolus. It 
is observed that bolus is not significantly affected with an increase in Forchiemmer parameter. 
However, the bolus gets shrinked and center of circulation shift from lower to upper half with in-
creasing K*. Figure 21 shows the effects of Hartmann number on streamlines. Here it is noted that 
circulating bolus concentrated in upper half of the channel for Ha = 0.5 transforms to the bolus 
whose center of rotation lies in the lower half of the channel with increasing Hartmann number 
to 3.5. In the process of transformation the size of the bolus is also reduced. Figure 26 shows that 
the bolus is asymmetric and concentrated in the upper half of the channel for smaller values of γ  
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i. e. in a curved channel. However, it regains its symmetry when i. e. when γ → ∞ channel be-
comes straight.
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Figure 25. Streamlines in wave frame for (a) F0 = 1, (b) F0 = 5, and (c) F0 = 10; the other parameters 
chosen are γ = 2, K*= 2, and λ = 0.8
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Conclusions

The flow induced by peristaltic waves inside a curved porous-saturated channel is 
numerically simulated under long wavelength assumption with Darcy-Forchiemmer law and 
Joule heating effect. The behavior of velocity, pressure, temperature, mass concentration and 
streamlines is shown through graphs. The key findings of the analysis are:

 y The flow velocity diminishes with increasing K* and Hartmann number. 
 y Pressure rise per wavelength increases with increasing K* and Hartmann number. In con-

trast, Δp is nearly independent of F0 in pumping region. In fact it is possible to choose the 
plausible of F0 for which Δp corresponding to Θ = 0.

 y The radial distribution of temperature inside the channel follow increasing trend with increas-
ing Brinkmann number, K*, and Hartmann number, while it decreases with increasing F0.

 y The size of circulating bolus of fluid reduces with increasing K*and Hartmann number.
 y The bolus size is nearly unaffected with increasing F0.
 y Greater peristaltic mixing is achieved with increasing Hartmann number and curvature of 

the channel.
 y The symmetry in velocity and streamlines pattern is observed when γ → ∞.

Nomenclature

B*  – magnetic field, [Wbm–2]
C – mass concentration, [kg]
c  – wave speed, [ms–1]
D – coefficient of mass diffusivity, [m2s–1]
k*  – thermal conductivity, [Wm–1K–1]
T  – temperature, [K]
Tm – mean fluid temperature, [K]
T0  – temperature at lower wall, [K]
T1  – temperature at lower wall, [K]
u1, u2 – velocity component, [ms–1]

Greek symbols

γ  – dimensioless radius of curvature, [m]
δ  – wave number, [m–1]
λ, λ′ – amplitude ratio,[m]
µ  – viscosity parameter, [kgm–1s–1]
ρ – density, [kgm–1

σ  – Stefan-Boltzman constant, [Wm–2K–4]
τ  – Cauchy stress tensor, [kgm–1s–2]
Φ  – dissipation function, [kgm–1s–3]
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