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An investigation is carried out to discuss the heat transfer mechanism to an elec-
trically conducting viscous fluid on a curved stretching/shrinking surface incorpo-
rated with convective boundary condition. The impact of uniform magnetic field is 
also considered. The mathematical formulation for the transport of heat and flow 
phenomena is developed by utilizing a curvilinear co-ordinates system. The ob-
tained sets of PDE are reconstructed into coupled non-linear differential equations 
by incorporating similarity transformations. The numerical solution is attained by 
employing the shooting method. The obtained solutions are then used to discuss 
the impacts of various emerging parameters on the temperature and heat transfer 
across the surface. Dual nature of the solutions are obtained for definite range of 
convective, suction, magnetic, Prandtl number and stretching or shrinking param-
eters. Comparison of the obtained results with the existing results for a flat sheet is 
found in acceptable agreement. It is noticed that with an increment in convective 
parameter increases the temperature of the fluid, while an increase in suction and 
magnetic parameters decreases the temperature of the fluid for both the solutions.
Key words: convective boundary condition, MHD flow, numerical solution, 

curved stretching/shrinking sheet viscous fluid 

Introduction

The analysis of heat transfer mechanism on a stretching or shrinking sheet is a sig-
nificant fiels of research from last few decades. The boundary-layer flow towards a stretching 
sheet have abundant practical applications including glass blowing, paper production, metal 
spinning, extrusion of plastic sheets and many more. The finishing of the ultimate product in 
these applications has a strong dependence on the amount of heat transfer across the surface and 
the fluid. This fact is explained by Karwe and Jaluria [1]. The heat transfer analysis in fluid-flow 
by considering a constant surface temperature is rich and well established area of research and 
for more information readers are pointed to the book by Incropera [2].
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Crane [3] examined the boundary-layer flow towards a stretching sheet and obtained 
an exact solution. Miklavcic and Wang [4] discussed for the first time the boundary-layer flow 
of a viscous fluid on a shrinking wall. They also pointed out the existence and (non) singularity 
of both numerical and closed form solutions. Bhattacharyya [5] analyzed the effects MHD flow 
and heat transfer subjected to heat source or sink towards a shrinking wall with mass suction. 
Bejan [6] examined a similarity solution by taking the boundary condition of invariable heat 
flux at the surface. Aziz [7] studied the classical problem of thermal boundary-layers and hy-
drodynamic flow towards a flat plate incorporated with convective surface boundary condition. 
The research work to study flow and heat transfer mechanism for different kind of flow geome-
tries are discussed by many authors, the interesting readers see the articles [8-20] and references 
therein.

The application of an applied magnetic field to the flow has extensive applica-
tion in cosmic fluid dynamics, polymer industry, metallurgy, geophysics and in the motion 
of earth’s core. Jafar et al. [21] discussed the hydromagnetic flow and heat transfer towards 
stretching/shrinking sheet in with viscous dissipation and Joule effects. Kameswaran et al. [22] 
examined the impacts of hydromagnetic nanofluid flow caused by stretching/shrinking surface 
with chemical reaction and viscous dissipation effects. Rosca [23] examined the MHD flow 
past a permeable shrinking surface. Numerical solution of hydromagnetic flow with impacts 
of viscous dissipation was studied by Mishra and Jena [24]. For more detail regarding the flow 
phenomenon with magnetic field the readers are directed to the articles [25-31].

Generally, the flow problem on a stretching surface have been considered towards a 
flat plate. However, Sajid et al. [32] has given a unique concept of research by considering a 
curved stretching sheet having an invariable curvature and employed a curvilinear co-ordinate 
system to formulate the flow equations. The impacts of heat transfer on a MHD flow over a 
curved stretching surface was examined by Abbas et al. [33]. Naveed et al. [34] explored the 
hydromagnetic micropolar fluid-flow due to a curved stretching sheet with thermal radiation. 
Recently, Abbas et al. [35] studied the influence of thermal radiation on MHD slip flow of a 
nanofluid towards a curved stretching surface.

The prime intention of this study is to extend the investigation carried out by Aziz [7] 
for convective boundary condition to the flow towards a curved generalized stretching/shrink-
ing surface by considering constant magnetic field. The dual solution occurs for the present 
flow problem in case of curved shrinking surface. 

Formulation

Consider the steady, incompressible boundary-layer flow of a viscous fluid on a curved 
stretching or shrinking sheet curled in a circle of radius, R, with mass transfer in a static fluid, 
fig. 1. It is considered that the sheet is being stretched or shrinked in s-direction with a velocity 

,wu bs=  where 0b >  indicates the stretching and 0b <  indicates the shrinking of the sheet. Fur-
thermore, it is also considered that wv  is the constant mass transfer velocity in the fluid with 

0wv >  for suction and 0wv <  for injection. A uniform magnetic field of strength, 0B , is applied in 
the r-direction. The impacts of induced magnetic field can be neglected by considering the low 
magnetic Reynolds number regime. The surface temperature of the sheet is maintained at con-
stant value of wT  by using convective heat transfer condition and the temperature of the ambient 
fluid is T∞. The boundary-layer equations that governs the current flow situation are:

 ( ) 0ur R v R
r s
∂ ∂

+ + =  ∂ ∂
 (1)
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where v  and u  indicates the velocity components in r  and s-directions, respectively, and 
, , , ,k pν σ ρ , and T  represents the thermal conductivity, kinematic viscosity, electrical conduc-

tivity, pressure, density, and temperature of the fluid, respectively. Viscous dissipation in the 
energy equation is also neglected in the present study. 

The boundary conditions for the current study are:

 
( ),  ,  at  0
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w f f w
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uu T T r
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∂
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In previous equation fh  denotes the convective heat transfer coefficient, b – the con-
stant having dimension (time)-1, and fT  – the final temperature of the fluid with f wT T T∞> > .

Our interest lies in reducing the problem given in eqs. (1)-(5) into differential equa-
tions. For this purpose we incorporate the similarity variables of the form:

 ( ) ( ) ( ) ( )2 2, , , ,
f
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The transformed equations in new variables are:
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 (0) ,  (0) , (0) [1 (0)], ( ) 0, ( ) 0, ( ) 0bf S f f f
a

α θ γ θ θ′ ′ ′ ′′= = = = − − ∞ = ∞ = ∞ =  (10)

where 1/2/( )wS v aν=  is the mass transfer parameter such that 0S >  indicates suction and 0S <  
is for injection and α  represents the stretching/shrinking parameter with 0α >  for the stretching 

Figure 1. Geometry of the flow problem
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parameter and 0α <  for the shrinking parameter. Also 2 1/2
0 / , Pr / , ( / )pM B a c k K R aσ ρ µ ν= = = , 

and 1/2/ ( / )h k aγ ν= , is the magnetic parameter, Prandtl number, dimensionless radius of curva-
ture and Biot number, respectively.

Elimination of pressure between eqs. (7) and (8) yield:
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After obtaining the velocity profile ( )f η , the pressure could be obtained from eq. (8) as:

    ( )
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Physically the quantities of interest are the wall temperature, local Nusselt number 
and the skin friction coefficient at the surface, which are defined:
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( )
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where wq  and rsτ  are the heat flux and shear stress at the wall along the s-direction which is 
given:
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Using eqs. (6) and (14) with the help of eq. (13) becomes:

 ( ) ( ) ( ) ( ) ( )1/2 1/20 0
Re 0 , 0 1 , Re Nu 0s f s s

f
C f

K
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−′ ′
′′ ′= − = − = −  

where 2Re /s as ν=  represents the local Reynolds number.

Result and discussions

Numerical solutions of the non-linear boundary value problem composed of eqs. (9) 
and (11) subject to boundary conditions (10) are attained in terms of temperature and fluid ve-
locity by using the shooting method with Runge-Kutta algorithm. The dual solutions in case of 
shrinking flow are attained by employing different initials values for (0), (0)f f′′ ′′′ , and (0)θ ′ , 
where entire velocity and temperature fields fulfill the free stream boundary conditions asymp-
totically for entire values of the fluid parameters and choosing a suitable finite value of η∞ 
(where η∞ corresponds to η →∞). The impacts of radius of curvature on pressure distribution 
has already been explained in Abbas et al. [33]. The impacts of some physical parameters of 
interest on the fluid velocity and temperature field are plotted and given in figs. 2-9. Tables 1-3 
are made to give the comparison of current results with the available results in the literature [7, 
19, 36, 37] as a special case of flat stretching or shrinking sheet.

Figure 2 shows the variation in the temperature field ( )θ η  for several values of the 
Prandtl number in the case of stretching sheet ( 2α = ) with 4S = , –4, respectively. From fig. 2(a) 
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it can be seen that both the temperature and also the thermal boundary-layer thickness is decreased 
with raise in the parameter of Prandtl number in the case of suction 4S = . For the case of injection 

4S = − , it is found from fig. 2(b) that the thermal boundary-layer is blown away from the sheet and 
heat flux at the surface becomes very small. Further, it is noticed that the thermal boundary-layer 
thickness is still thinner for higher values of Prandtl number, but the temperature distribution is 
quite interesting. Figure 3 depicts the dual solutions of the temperature field ( )θ η  for different 
values of the Prandtl number when ( 2α = − ) with 4, 5, 0.2S γ λ= = = , and 10K = . It can be seen 
from this figure that for both solutions the temperature of fluid and the thermal boundary-layer 
thickness decrease with raise of Prandtl number. Figure 4 elucidates the dual solutions of the tem-
perature distribution ( )θ η  for different values of the mass suction parameter, S, in the case of 
shrinking flow ( 1.5α = − ) by keeping other parameters fixed. From this figure it is evident that 
both the temperature and thermal boundary-layer thickness decrease by increasing the mass suc-
tion parameter, S. The influence of the mass suction/injection parameter, S, on the temperature 
profile, ( )θ η , is shown in fig. 5, for stretching flow ( 2α = ) with Pr 0.7, 2, 0.2γ λ= = = , and 

10K = . It is noticed from this figure that the rate of heat transfer to the fluid is decreased with an 
increase in mass suction/injection parameter i. e. S changes from –2 to 2. Figure 6 illustrates the 
impacts of the convective parameter (or Biot number) γ  on the temperature distribution, ( )θ η , for 
shrinking flow ( 2α = − ). It is observed from this figure that for both solutions the temperature of 
fluid decreases with an increase in convective parameter γ . Figure 7 presents the dual solutions of 
temperature field, ( )θ η , for divers values of the magnetic parameter, M, in case of shrinking flow  

Figure 2. Variation of Pr on ( )θ η  under suction = 4S  (a) and injection = −4S  (b); with 
= = =2, 5, 10Kα γ , and = 0.2M  fixed
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Figure 3. Variation of Pr on the ( )θ η  with 
= − = = =2, 5, 4, 10S Kα γ , and = 0.2M  fixed

Figure 4. Variation of S on ( )θ η  with 
= − = = =1.5, 4, Pr 0.7, 10Kα γ , and = 0.2M  fixed
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( 1.5α = − ) with other fluid parameters are fixed.. It can be seen that the temperature and the ther-
mal boundary-layer thickness decreases with raise in magnetic parameter, M.

Figure 8 is plotted to show the variation of (0)θ ′  with the suction parameter, S, for 
divers values of the magnetic parameter, M. It is clear from this figure that for 0.2M = , dual 
solution exists for 3.092451cS S< =  (where Sc is the critical value of S) and no solution exists 
for cS S< . For 0.19M = , the duality of solution is obtained for cS S≥ , and no dual solution is 
found for cS S< . The dual nature of solution for 0.18M =  is obtained for 3.301900cS S≥ =  and 
the solution vanishes for 3.301900cS S< = . Figure 9 is plotted to present the variation of (0)θ ′
with the suction parameter for various values of the Prandtl number. It can be seen from this 
figure that dual solutions exist for 3.092451cS S≥ = , for different values of the Prandtl number 
while no dual solution exists for 3.092451cS S< = .

Figure 5. Variation of S on the temperature 
distribution ( )θ η  with = = = =2, 4,Pr 0.7, 10Kα γ , 
and = 0.2M  fixed

Figure 6. Variation of γ  on ( )θ η  with 
= − = = =2, 5,Pr 0.7, 10S Kα , and = 0.2M  fixed
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Figure 7. Variation of M on ( )θ η  with 
= − = = =1.5, 4,Pr 0.7, 10Kα γ , and = 3S  fixed

Figure 8. Variation of M on −1 2Re Nus s with S by 
keeping = − = =1.5,Pr 0.7, 10Kα , and = 4γ  fixed
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Table 1 indicates the numerical values of the local Nusselt number (0)θ ′− for several 
values of Prandtl number when 1, 0S Mα = = = , and 1000γ =  in the case of flat stretching sheet 
(K →∞). From this table, the comparison of the present results with those reported by Ma-
kinde and Aziz [17], Wang [37], and Khan and Pop [36] and is given and found in good agree-
ment. Tables 2 and 3 shows the absolute values of surface temperature (0)θ and Nusselt number 

(0)θ ′− , when 0M S= = , for diverse values of Prandtl number and γ  in case of flat stretching 
sheet (taking K →∞). It is worth mentioning from this table that the present numerical results 
are in acceptable agreement with the result reported by Aziz [7].
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Table 2. Numerical values of ′− (0)θ  for various values of γ  and Pr by keeping K = 1000
Pr = 0.1 Pr = 0.72 Pr = 10

γ [7] Present results [7] Present results [7] Present results
0.05 0.0373 0.0373 0.0428 0.0428 0.0468 0.0468
0.10 0.0594 0.0594 0.0747 0.0747 0.0879 0.0879
0.20 0.848 0.848 0.1193 0.1193 0.1569 0.1569
0.40 0.1076 0.1076 0.1700 0.1700 0.2582 0.2582
0.60 0.1182 0.1182 0.1981 0.1981 0.3289 0.3289
0.80 0.1243 0.1243 0.2159 0.2159 0.3812 0.3812
1.0 0.1283 0.1283 0.2282 0.2282 0.4213 0.4213
5.0 0.1430 0.1430 0.2791 0.2791 0.6356 0.6356

10.0 0.1450 0.1450 0.2871 0.2871 0.6787 0.6787
20.0 0.1461 0.1461 0.2913 0.2913 0.7026 0.7026

Table 3. Numerical values of the surface temperature (0)θ  for different values of γ and  
Pr by keeping K = 1000

Pr = 0.1 Pr = 0.72 Pr = 10
γ [7] Present results [7] Present results [7] Present results

0.05 0.2536 0.2536 0.1447 0.1447 0.0643 0.0643
0.10 0.4046 0.4046 0.2528 0.2528 0.1208 0.1208
0.20 0.5761 0.5761 0.4035 0.4035 0.2155 0.2155
0.40 0.7310 0.7310 0.5751 0.5751 0.3546 0.3546
0.60 0.8030 0.8030 0.6699 0.6699 0.4518 0.4518
0.80 0.8446 0.8446 0.7302 0.7302 0.5235 0.5235
1.0 0.8717 0.8717 0.7718 0.7718 0.5787 0.5787
5.0 0.9714 0.9714 0.9441 0.9441 0.8729 0.8729

10.0 0.9855 0.9855 0.9713 0.9713 0.9321 0.9321
20.0 0.9927 0.9927 0.9854 0.9854 0.9649 0.9649

Figure 9. Variation of Pr on −1 2Re Nus s  with S by 
keeping = − = =1.5, 0.2, 10M Kα , and = 4γ  fixed

First solution
Second solution

S

(
)

θ
η′ Pr = 0.7

Pr = 1

Pr = 1.5

Table 1. Numerical values of ′− (0)θ  for various 
values of Pr by keeping = = = =1, 0, 1000S Mα γ , 
and K = 1000

Pr [36] [37] [17] Present 
results

0.07 0.0663 0.0656 0.0656 0.0656
0.20 0.1691 0.1691 0.1691 0.1691
0.70 0.4539 0.4539 0.4539 0.4539
2.00 0.9113 0.9114 0.9114 0.9114
7.00 1.8954 1.8954 1.8954 1.8954
20.0 3.3539 3.3539 3.3539 3.3539
70.0 6.4621 6.4622 6.4622 6.4622

Concluding remarks

The boundary-layer flow and heat transfer in a viscous fluid over a curved generalized 
stretching or shrinking sheet with convective boundary condition is carried out. This study is 
more general and novel by considering convective heating boundary condition instead of a 
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constant heat flux or a constant temperature of the wall. The transformed similarity equations 
are solved numerically and the influence of various pertinent parameters on the temperature 
distribution is analyzed, presented and discussed graphically. Dual solutions occur for shrinking 
flow for certain values of generalized shrinking parameter, α . An increment in the surface con-
vective parameter, γ , yields to increase in the temperature of the fluid which results in an in-
crease in the heat transfer rate. The enhancement in the magnetic parameter, M , leads to de-
crease the temperature of the fluid.
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Nomenclature
B0 – constant magnetic field, [T] 
b – constant, [–]
cp – specific heat at constant pressure, [Jkg–1K–1]
f – dimensionless fluid velocity  

in r -direction, [–]
f’ – dimensionless fluid velocity in  

s -direction, [–]
K – dimensionless radius of curvature, [–]
k – thermal conductivity of the fluid, [Wm–1K–1]
M – magnetic parameter, [–]
P – dimensionless pressure, [–]
Pr – Prandtl number, [–]
p – pressure, [kgm–1s–2]
R – radius of curvature, [m]
Res – local Reynold number, [–]
r – distance normal to stretching surface, [m]
S – dimensionless mass transfer parameter, [–]
s – flow directional co-ordinate along the 

stretching surface, [m]

T – temperature, [K]
T∞ – ambient fluid temperature, [K]
Tf – final temperature, [K]
Tw – surface temperature, [K]
u – velocity component in the s -direction, [ms–1]
v – velocity component in the r -direction, [ms–1]
vw – mass suction/injection velocity, [ms–1]

Greek symbols

α – shrinking prameter, [–]
γ – convective parameter or Biot  

number, 1/2[ / ( / ) ]h k aν= , [–]
θ – dimensionless fluid temperature, 

[ ( )/( )]fT T T T∞ ∞= − − , [–]
μ – dynamic viscosity of the fluid, [kgm–1s–1]
ν – kinematics viscosity of the fluid, [m2s–1] 
ρ – density of fluid, [kgm–3]
σ – electrical conductivity, [sm–1]
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