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This study focuses on the optimal design of distributed energy 

resource (DER) systems with consideration of large-scale 

uncertainty of energy demands based on decision-making theory. 

Five integrated modeling and optimization frameworks are 

developed through the combined use of mixed integer linear 

programming (MILP) and uncertainty decision-making criteria 

(including optimistic criterion, pessimistic criterion, Hurwicz 

criterion, Laplace criterion, and minimax regret criterion). 

Superstructure-based MILP models are used for the optimal design 

and optimal operation of the system where the objective function is 

to minimize the annual cost. The uncertainty of energy demands is 

represented by assuming a set of possible scenarios. The proposed 

methods are applied to the planning of a DER system for a hotel in 

Guangzhou, China and their validity and effectiveness are verified. 

Results show that each method has its specific feature. Optimistic 

method is risky and recommends a relative small-scale system, while 

pessimistic method is conservative presenting a relative large-scale 

system. Hurwicz method is with great subjectivity, making different 

decisions at different values of optimism coefficient. Both Laplace 

method and minimax regret method identify a moderate-scale system 

as the best alternative. Sensitivity analyses on the energy demand 

scenarios are conducted and results show that the five methods have 

high sensitivity to the choice of scenarios.  
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1. Introduction 

As an electricity-generation system located in or near end users, distributed energy 

resource (DER) systems can simultaneously provide electricity, cooling, and heating to meet 

the demands of local users [1]. They allow for the achievement of high overall efficiency, 

excellent environmental performance, low transmission and distribution losses, and other 

benefits through the efficient utilization of exhaust heat and on-site generation [2-4]. 

However, many types of uncertainties exist in the optimal design of DER systems. 

Various efforts have been made to assess the uncertainties in the modeling of DER systems. Li 

et al. [5] conducted sensitivity analyses about energy demands which are described by adopting 

average, uncertainty and historical peaks. In our previous work, Monte Carlo simulation has 

been used to evaluate DER systems from the perspective of energy, economic, and 

environmental aspects under the uncertainties of load demands and energy prices [6]. Zhou et 

al. [7] developed a two-stage stochastic programming model for the optimal design of DER 

systems under uncertain load demands and renewable energy supply presented by probability 

distributions. When taking into account large-scale uncertainties in a long-term time frame [8] 

or the information available is not enough to model the uncertainties, decision-making theory 

is a suitable option, which addresses the problem from a decision point of view rather than from 

an optimization point of view. Yokoyama and Ito proposed an optimal design method for a gas 

turbine cogeneration system in consideration of uncertain energy demands using the minimax 

regret criterion [9]. Carpaneto et al. [8] and [10] formulated a comprehensive approach based 

on decision-making theory for the planning of cogeneration systems with consideration of the 

large-scale uncertainties in energy demands and energy prices on a long-term time scale. 

Results showed that the decision-making theory approach is a useful tool that can be easily 

customized by the decision-makers to define and handle the scenarios to get the satisfactory 

outcomes. However, alternative plans for the system were specified artificially rather than 

determined by optimization techniques in their studies. The maximum economic and energy-

saving benefits of cogeneration systems may not be achieved. Another common shortcoming 

of the existing models is that they focus on cogeneration systems without considering cooling 

technologies, renewable energy technologies, and energy storage technologies. 

In the majority of the aforementioned studies, energy demands receive the most 

significant attention among various types of uncertainties. Large-scale uncertainties in energy 

demands usually exist because it is difficult to envision the evolution trends of energy demands 

over a multi-year time frame for DER systems planning [8]. Considering the volatility of energy 

demands is particularly important and necessary towards the optimal design of DER systems 

since the main aim of these systems is to meet energy demands and energy supply-demand 

relationships are key constraints in the optimization model [5].  

This paper develops five uncertain programming models for the optimal design of DER 

systems with consideration of large-scale uncertainties in energy demands. These models are 
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composed of superstructure-based MILP models for the optimal design and operation of the 

system and five decision-making criteria. The evolution trends of energy demands are described 

by a set of possible scenarios. With respect to the previous studies, the novelties of the current 

study mainly lie in three aspects. Firstly, alternative plans for the system are determined by 

optimization calculation. The MILP models are used to determine the alternative plans and their 

annual cost under various scenarios. Secondly, the overall framework is developed for 

trigeneration systems supplying electricity, cooling, and heating demands. Multiple power 

generation technologies (e.g., gas engines, gas turbines, photovoltaics, and wind turbines) and 

energy storage technologies (e.g., heat and cold storages) are considered. Finally, the effect of 

the choice of energy demand scenarios on the decision of installing DER technologies is studied 

quantitatively for the five methods. For an illustrative example, these methods are applied to a 

hotel located in Guangzhou, South China. The respective features of these methods are 

discussed. A sensitivity analysis is conducted by varying the energy demand scenarios. 

2. Mathematical formulation 

2.1. Mathematical model 

The mixed integer linear programming (MILP) mathematical model for the optimal 

design and the optimal operation of DER system can be found in our earlier publication [11].  

2.2. Five uncertainty decision-making criteria 

Optimistic criterion is always full of optimism for future development, taking the best 

condition into account. It identifies the plan with lowest value selected among the minimum 

annual cost value generated in each scenario as the best plan. Its decision strategy can be 

expressed as follows [12]: 

 

  , ,min min Total p s
p P s S

C
                            

(1) 

 

, ,Total p sC means the annual cost value. It should be noted that the relations applied in the 

optimistic criterion as well as the following pessimistic criterion, Hurwicz criterion, and 

Laplace criterion are based on the situation of cost minimization rather than profit or 

productivity maximization. 

Pessimistic criterion is opposite to the optimism decision criterion, assuming the most 

pessimistic scenario to occur. It identifies the plan with the minimum annual cost value selected 

among the maximum annual cost values generated in each scenario as the best plan. Its decision 

strategy can be expressed as follows [12]: 

 

  , ,min max Total p s
p P s S

C
                            

(2) 

 

Hurwicz criterion takes into consideration both the worst and the best possible results, 

weighted according to the decision-makers’ attitude (more optimistic or more pessimistic). It 

needs to identify an optimism coefficient  () which determines the level of the 

decision-makers’ hope to obtain the best possible result. It identifies the plan with the lowest 



4 

 

weighted annual cost value in various scenarios as the best plan. Its decision strategy can be 

expressed as follows [12]: 

 

  ( )   , , , ,min min + 1- maxTotal p s Total p s
p P s S s S

C C 
  

 
              

(3) 

 

Laplace criterion assumes all scenarios are equally likely. If there are m scenarios, the 

probability of each scenario is 1/m. It identifies the plan with the minimum average annual cost 

value in various scenarios as the best plan. Its decision strategy can be expressed as follows 

[13]: 
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Minimax regret criterion selects the minimum annual cost value in each scenario as the 

ideal goal and defines the difference between the other annual cost value and the ideal goal as 

the regret value. The regret value in each scenario is computed for each plan for all possible 

scenarios and the maximum regret value is found for each plan. The best plan minimizes the 

maximum regret value. Its decision strategy can be expressed as follows [14, 15]: 

 

  , , , ( ),
min max Total p s Total p s sp P s S
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−
                     

(5) 

 

The modeling and solution of the five uncertain programming models are implemented 

in Advanced Integrated Multi-dimensional Modeling Software 3.12 (AIMMS 3.12) [16], which 

is an advanced development environment for modeling and solving large-scale optimization 

and scheduling-type problems. The MILP models are solved with the CPLEX 12.4 solver. 

3. Numerical study 

To illustrate the validity and effectiveness of the proposed five uncertain optimization 

methods and their respective features, a numerical study is carried out on the planning of a DER 

system for a hotel in Guangzhou, South China. The information of Climate condition, subsidy, 

electricity and gas tariffs in Guangzhou can be found in [17]. 

3.1. Energy demands 

The hourly electricity, cooling, and heating demands of the hotel on typical days are 

obtained through field investigation. Over a multi-year time frame for system operation, the 

possible hourly energy demands are assumed to be a set of seven scenarios from scenario 1 to 

scenario 7 which are 70%, 80%, 90%, 100%, 110%, 120% and 130% of their values on typical 

days. This set is used to present the energy demands uncertainty.  

3.2. DER equipment options 

Table 1 shows the equipment candidates and their technological and economic data as 

well as the maximum number that can be installed in the hotel. The cut-in, maximum power 

and cut-out wind speeds of the wind turbine are 3, 15, and 20 m/s, respectively. The area of 
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each photovoltaic panel is 187 m2. Some specific illustrative examples can be obtained from 

our earlier publication [17, 18].  

 

Table. 1. Information on the equipment candidates [19-24] 

Equipment 

type 

Rated capacity 

(kW) 

Rated 

efficiency 

/α/COP 

Unit capital and 

installation cost 

($/kW) 

Unit O&M 

cost 

($/kWh) 

Lifetime 

(year) 

Load 

regulation 

range 

Maximum 

installed 

number 

Gas turbine 

4345 28.3% 880 0.004 15 0.38–1 6 

5200 29.4% 852 0.004 15 0.4–1 6 

Gas engine 

4500 39.5% 962 0.009 15 0.4–1 6 

5200 40.3% 936 0.009 15 0.4–1 6 

Wind turbine 10 1.345 2882 0.0084 25 - 20 

Photovoltaic 28 17% 2420 0.0084 25 - 20 

Waste-heat 

boiler 

1000 78% 186 0.0027 15 0.38–1 20 

1600 78% 186 0.0027 15 0.3–1 20 

Gas boiler 

2000 85% 143 0.0027 15 0.3–1 20 

3000 85% 143 0.0027 15 0.3–1 20 

Heat storage - - 33 0.0013 20 - - 

Absorption 

chiller 

1454 1.417 246 0.001 25 0.05–1.15 20 

2326 1.417 246 0.001 25 0.05–1.15 20 

Compression 

chiller 

4220 4.76 146 0.0015 25 0.1–1 20 

5280 5.04 146 0.0015 25 0.1–1 20 

Cold storage - - 33 0.0013 20 - - 

 

4. Results and discussions 

4.1. Alternative plans 

The case described in the previous sections is solved on an Intel® Pentium® CPU G620 

(2.60 GHZ) with 4 GB RAM. The optimization design model includes 9650 constraints and 

4314 variables (1612 discrete), and its solution time is different at various energy demand 

scenarios varying from 3 min to 118 h 31 min with an optimality gap of zero. The optimization 

operation model includes 9612 constraints and 4284 variables (1584 discrete) and can be solved 

in one second with an optimality gap of zero. 

Table 2 shows the optimal numbers and capacities of equipment for the seven alternative 

plans. The seven plans have the same system structure as shown in fig. 1. The gas engine is 

selected as the sole power generation facility. Waste-heat boilers and absorption chillers are 

allocated to recover the exhaust heat generated by the gas engines. Gas boilers and compression 

chillers are used to supplement the shortages in heating and cooling and act as standby 
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equipment. Heat and cold storages are also allocated. The optimal capacities of gas engines, 

waste-heat boilers, and absorption chillers increase with increasing energy demands from plan 

I to plan VII. Gas boilers and compression chillers are allocated with the same capacities in the 

seven plans, which are determined by the maximum heating and cooling demands. No gas 

turbine, wind turbine, or photovoltaic is adopted mainly because of the low electricity 

generating efficiency or the high capital cost of these components. 

 

Figure 1. Structure of the DER systems for the seven plans 

 

Figure 2 illustrates the annual cost for each plan under various scenarios. The possible 

annual cost for the DER system is between 11.64 and 23.01 million dollars. For each plan, the 

annual cost increases with the increase of energy demands and takes the lowest and highest 

value at scenario 1 and scenario 7 respectively. For each scenario, the plan corresponding to 

the filling symbols has the lowest annual cost of all plans because other plans are not large 

enough, which leading to a higher electricity purchased cost, or too large, which leading to a 

higher equipment investment cost.  

 

Figure 2. Annual cost for each plan under various scenarios (filling symbols correspond 

to the lowest annual cost for each scenario) 
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Table. 2. Optimal numbers and total capacities of equipment for the seven alternative plans 

Plan Based on 

Gas engine Waste-heat boiler Gas boiler Absorption chiller Compression chiller Heat storage Cool storage 

Number 
Total capacity 

(kW) 
Number 

Total capacity 

(kW) 
Number 

Total capacity 

(kW) 
Number 

Total capacity 

(kW) 
Number 

Total capacity 

(kW) 

Total capacity 

(kWh) 

Total capacity 

(kWh) 

I Scenario 1 2 10,400 3 3000 6 18,000 3 6978 9 47,520 15,133 4185 

II Scenario 2 2 10,400 2 3200 6 18,000 3 6978 9 47,520 17,075 2624 

III Scenario 3 3 15,600 4 4000 9 18,000 7 10,178 9 47,520 13,809 17,726 

IV Scenario 4 3 15,600 4 4000 9 18,000 7 10,178 9 47,520 18,796 4257 

V Scenario 5 3 15,600 3 4800 6 18,000 7 10,178 9 47,520 25,094 4007 

VI Scenario 6 4 20,800 5 5000 6 18,000 9 13,086 9 47,520 21,565 2660 

VII Scenario 7 4 20,800 5 5000 9 18,000 9 13,086 9 47,520 23,825 15,383 
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4.2. Selection of the best plans 

Figure 3 shows the evaluation values for each plan for the five uncertain optimization methods. 

According to the optimistic method, plan I is chose as the best plan because it has the lowest minimum 

annual cost. Decision-makers believe that the minimum energy demands (scenario 1) will occur. This 

decision is risky and requires bearing the risk of the corresponding increase in annual cost because the 

capacities of gas engines are smaller than the optimal ones when other energy demand scenarios occur, 

leading to much more amount of electricity purchased cost. 

 

Figure 3. Evaluation values for each plan for the five methods (filling symbols correspond to the 

best plan) 

 

Pessimistic method provides a reliable but conservative plan for decision-makers, namely plan 

VII which has the highest initial equipment investment cost. With an extreme pessimistic behavior, 

decision-makers believe that the maximum energy demands (scenario 7) will occur. 

According to the Hurwicz method, if the optimism coefficient  takes 0.4, the best alternative is 

plan VI because it leads to the lowest weighted annual cost. The key of this method is to determine the 

optimism coefficient which is with great subjectivity due to being determined by persons. As shown in 

fig. 4, different choices will be made at different values of  

 

Figure 4. Weighted annual cost for each plan for the Hurwicz method at different values of  

(filling symbols correspond to the best plan) 
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For Laplace method, the best alternative is plan IV with the lowest average annual cost. This 

method uses all the information in each plan. The key of this method is to judge whether the probability 

of occurrence of various energy demand scenarios has the same average value. 

According to the minimax regret method, plan IV is recommended because it suites the lowest 

maximum regret in annual cost. There are two possible types of regret for one plan: the system scale is 

smaller than the optimal one which leads to a higher electricity purchased cost; the system scale is larger 

than the optimal one which leads to a higher equipment investment cost. The feature of this method is 

to find a balance point between the two types of regret, namely, find a plan which is robust economically 

against the uncertainties in energy demands. 

It should be noted especially that the five uncertain optimization methods almost lead to different 

alternative decisions and the best plan depends on the method chosen by the decision-maker who might 

be optimist or pessimist, or strive to reduce the regret. Each method has a specific utility for a decision-

maker or another since different persons mostly have different nature, different perception regarding the 

probability of the future events, or different attitude towards uncertainty on solving a problem. 

4.3. Sensitivity analyses on scenarios 

Sensitivity analyses on energy demand scenarios are performed to understand the level of 

sensitivity of the scenarios to the decision of installing DER technologies. Six cases are assumed in the 

analysis. Table 3 shows the ratios of energy demands under various scenarios to its values on typical 

days for every case.  

 

Table. 3. Ratios of energy demands under various scenarios to its values on typical days for the 

six cases 

 

Scenarios 

1 2 3 4 5 6 7 

Cases 

1 70% 80% 90% 100% 110% 120% 130% 

2 70% 80% 90% 100% 105% 110% 115% 

3 70% 75% 80% 85% 90% 95% 100% 

4 85% 90% 95% 100% 110% 120% 130% 

5 85% 90% 95% 100% 105% 110% 115% 

6 100% 105% 110% 115% 120% 125% 130% 

 

Figure 5 shows the total installed capacities of equipment for the best plan under various cases 

for the five methods. It is found that for the five methods, although the best plans under various cases 

have the same system structure, they have obvious differences in the total installed capacities of 

equipment. This means that the five methods have high sensitivity to the choice of energy demand 

scenarios. Therefore, it is very important to predict the evolution trends of energy demands as accurately 

as possible.  
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(a) Optimistic criterion                     (b) Pessimistic criterion 

   
(c) Hurwicz criterion (𝛼= 0.4)                  (d) Laplace criterion 

 

(e) Minimax regret method 

Figure 5. Total installed capacities of equipment for the best plan under various cases for the 

five methods 

 

5. Conclusions 

In the present paper five uncertain programming models are developed to optimally design a DER 

system in consideration of large-scale uncertainty of energy demands based on decision-making theory. 

Superstructure-based MILP models for the optimal design and operation of the system and five 
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uncertainty decision-making criteria (including optimistic criterion, pessimistic criterion, Hurwicz 

criterion, Laplace criterion, and minimax regret criterion) are integrated. The alternative plans for the 

system are determined by the MILP models firstly. Then the best plans are identified among the 

alternatives by using various decision-making criteria. 

Application of the proposed optimization models to a hotel in Guangzhou city (China) illustrates 

the validity and effectiveness of the models. The results indicate that each of the five methods has 

respective features and utility. Optimistic method is risky and recommends a relative small-scale system. 

Pessimistic method is reliable but conservative and presents a relative large-scale system. Hurwicz 

method is with great subjectivity, making different decisions at different values of optimism coefficient. 

Both Laplace method and minimax regret method identify a moderate-scale system as the best 

alternative. The former assumes all energy demand scenarios are equally likely, while the latter is strive 

to minimize the future regret in annual cost. In addition, sensitivity analyses are conducted on the energy 

demand scenarios. Results show that the evolution trends of energy demands should be predicted as 

accurately as possible because the five methods have high sensitivity to the choice of scenarios. 
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