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In this work we suggest a numerical approach based on the B-spline polynomial 
to obtain the solution of linear fractional partial differential equations. We find the 
operational matrix for fractional integration and then we convert the main prob-
lem into a system of linear algebraic equations by using this matrix. Examples are 
provided to show the simplicity of our method.
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Introduction

Over the last decades fractional calculus were not useful application in physics and 
mathematical, albeit having a long history. In recent years a number of books [1-5] on fractional 
calculus were published. 

Compared with ODE, fractional order differential equations (FDE) has arbitrary or-
der derivatives and integrals. Our purpose is essentially useing the linear B-spline functions to 
solve PDE in fractional calculus. We paid attention on the following a class of fractional PDE 
(FPDE):
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where 1 2 1 2, ,  ,  ,ψ ψ η ηk  are the known function and ( , )z x t  are the unknown functions. The /γ γ∂ ∂z x  
and /µ µ∂ ∂z t  are the fractional Caputo derivative that is given:

 
( )

( , ) , ( 1, ),( , )

( , ),

m
m

m

m

z x tI m m mz x t
x

x
z x t m

γγ

γ

γ

γ

−  ∂
∈ − ∈Ν∂   = ∂ 

∂  =

 (4)

* Corresponding author, e-mail: jafari.usern@gmail.com



Jafari, H., et al.: New Method for Solving a Class of Fractional Partial Differential Equations... 
S278 THERMAL SCIENCE: Year 2018, Vol. 22, Suppl. 1, pp. S277-S286

Note that:
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where γI  is Riemann-Liouville integral operator. There are numerous methods to solve FPDE. 
These methods include Adomian decomposition method [6], Fractional subequation meth-
od [7], homotopy perturbation method [8], collocation method [9] , homotopy analysis method 
[10], He’s variational iteration method [11], and other methods [12-17]. 

In the current paper, we suggest the linear B-spline operational matrix method to solve 
the FPDE. At the first, we approximate z  in the eq. (1) by linear B-spline functions of unknown 
coefficients. Then using operational matrixes, the eq. (1) convert to a set of algebraic equations. 
Recently, FPDE have been solveing using Linear B-splines operational matrix of fractional 
derivatives and B-spline wavelet collocation method [14, 18]. Also Haar wavelet method used 
to sole these equations [19, 20]. 

The B-spline function and operational matrixes  
for fractional integration

Linear B-spline function on [0,1] 
The mth order cardinal B-spline ( )mN x  has the knote sequence { , 1,0,1, }−   Also 

there are polynomials of order m  (degree 1−m ) between the knots. The B-spline functions for 
2≥m  on [0,1] has the following form:
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where supp[ ( )] [0, ]=mN x m  and for 1=m  the characteristic function is 1 [0,1]( ) ( )χ=N x x . Here, 
we apply the linear B-spline function of order 2 in the following form [21]:
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Let , 2( ) (2 ), ,= − ∈j
j kN x N x k k j Z  and , ( ) =j kB x supp , ,[ ] close{ : 0}= ≠j k j kN x N .

It can show that their support is:

 , [2 ,2 (2 )], ,− −= + ∈j j
j kB k k k j Z  (10)

Define the set of indices:

 ,{ : [0,1] 0}= ∩ ≠j j kS k B  

According to eqs. (9) and (10), the minimum and maximum of { }jS  are –1 and 2 1−j . 
Because support of ,j kN  can be outside of [0,1], so we have to define ,φ j k  on [0,1]:
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 , , [0,1]( ) ( ),φ χ= ∈j k j kN x x j Z  (11)

The function approximation

We can expand function ( )f x  by ,φ j k for a fixed =j J :
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Also any function ( , )f x t  could expand by linear B-spline functions:

 
2 1 2 1

, ,
1 1

( , ) ( ) ( ) ( ) ( )
J J

T
ik J i J k J J

i k
f x t f x t x F tφ φ

− −

=− =−

≈ ≈ Φ Φ∑ ∑  (17)

where , , ,( ), ( , ), ( )φ φ= 〈 〈 〉〉i k J i J kf x f x t t .

Operational matrix for γI
Integration of the vector Φ J , leads to:

 ( ) ( ),γ γΦ ≈ Ι Φ
x J JI x x  (18)

where γΙ is the (2 1) (2 1)+ × +J J operational matrix of fractional integration. We obtain the 
matrix γΙ :
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where
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In eq. (20), ,[ ]= i kE a  is a (2 1) (2 1)+ × +J J  matrix:
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and , ( )γφx J kI x  according eq. (11) can be obtain:
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So that , 1( )γφ −x JI x  and 
,2 1
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−x JJ

I x  obtain:
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by substituting , ( ), 1, ,2 1γϕ = − −

J
x J kI x k  in eq. (21), we can find matrix E:
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Numerical solution of FPDE

Consider eq. (1) with conditions (2) and (3). First, we expand 
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So unknown function ( , )z x t  obtain:
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 ( , ) ( ) ( )≈ Φ ΦT
J Jg x t x G t  (31)

and ,[ ]= i jG g  is a (2 1) (2 1)+ × +J J  matrix. Also we approximate functions ( , )k x t  by the linear 
B-spline basis:

 ( , ) ( ) ( )≈ Φ ΦT
J Jk x t x K t  (32)

Now, by substituting eqs. (29)-(32) into eq. (1), we obtain:

 1 1 1 1( )[ ] ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )γ µ− −Φ Ι Ι Φ + Φ Ι Ι Φ + Φ Φ = Φ ΦT T T T T T
J J J J J J J Jx Z t x Z t x G t x K t  (33)

or

 { }1 1 1 1( ) [ ] [ ] ( ) 0γ µ− −Φ Ι Ι + Ι Ι + − Φ =T T T
J Jx Z Z G K t  (34)

Finally, eq. (33) give linear system of algebraic equations in the following form:

 1 1 1 1[ ] [ ] 0γ µ− −+ + − =T TI ZI I ZI G K  (35)

So Z can be computed by solving previous system. Consequently, we get the numeri-
cal solution of ( , )z x t  using eq. (28).

Numerical examples

Now we solve four examples that shows the efficiency of our technique.
Example 1. Analyze the following FPDE [19]:
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That exact solution is xt  which is studied by Wang et al. [19] by using Haar wavelet. 
Here we applied the linear B-spline function to solve it. By using eqs. (26) and (27), we have:
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Similarly we approximate 3/4 3/44( )/3 (3/4)+ Γx t xt :
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and ,[ ]= i jK k  is a (2 1) (2 1)+ × +J J  matrix. Now by substituting eqs. (42)-(44) into eq. (36), we 
have:

 3/4 1 1 3/4( )[ ] ( ) ( )[ ] ( ) ( ) ( )Φ Ι Ι Φ + Φ Ι Ι Φ = Φ ΦT T T T T
J J J J J Jx Z t x Z t x K t , (45)

or

 3/4 1 1 3/4( ){[ ] [ ] } ( ) 0T T T
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Finally, we obtain:

 3/4 1 1 3/4[ ] [ ] 0Ι Ι + Ι Ι − =T TZ Z K   (47)

That by solving system eq. (47) we can compute Z. 
The numerical results for J = 3 and the exact solutions are plotted in figs. 1 and 2, re-

spectively. From figs. 1 and 2 is obvious that numerical solutions converge to the exact solution.

Figure 1. Numerical solution for 
example 1 when J = 3  
(for color image see journal web site)

Figure 2. Exact solution for eq. (36) 
(for color image see journal web site)

Example 2. Solve the following fractional PDE [19]:
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That exact solution is 2 2 .+x t
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This example is studied by Wang et al. [19] using Haar wavelet. Here we applied the 
linear B-spline function to solve it. Let 2 / ( ) ( )∂ ∂ ∂ ≈ Φ ΦT

J Jz x t x Z t  then by using eqs. (26) and 
(27), we have:
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So unknown function ( , )z x t  obtain:
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Substituting eqs. (54) and (55) into eq. (48), we have: 

 2/3 1 1 1/2( )[ ] ( ) ( )[ ] ( ) 0Φ Ι Ι Φ + Φ Ι Ι Φ =T T T T
J J J Jx Z t x Z t  (56)

Finally, we obtain:

 2/3 1 1 1/2[ ] [ ] 0Ι Ι + Ι Ι =T TZ Z  (57)

So by solving previous system we achieve 0=z . Consequently by substituting 0=z  
in eq. (53), we obtain the exact solution of eq. (48) that is 2 2( , ) .= +z x t x t

Example 3. Now we examine the numerical solution of the FPDE [19]:

 
2 2 2 2(3) ( 1) (3)( 1) , 0 , 1
(3 ) (3 )

γ µ γ µ

γ µ γ µ

− −∂ ∂ Γ + Γ +
+ = + ≤ ≤

∂ ∂ Γ − Γ −
z z x t x t x t

x t
 (58)

subject to: 

 0 0| 2 , | 2= =

∂ ∂
= =

∂ ∂x t
z zt x
t x

 (59)

 2 2(0, ) 1, ( ,0) 1= + = +z t t z x x  (60)

That exact solution of eq. (58) is 2 2( 1)( 1).+ +t x
Figures 3 and 4 show the approximation and exact solution of ( , )z x t  for 3=J  when 

1/2, 1/3γ µ= = , respectively. The numerical results comparing the exact solution for 
0.25, 3= =x J  are shown in fig. 5. We can see numerical results converge to exact solution.

Example 4. Now we examine the numerical solution of the FPDE [19]:

 cos cos , 0 , 1z z x t x t
x t

γ µ

γ µ

∂ ∂
+ = + ≤ ≤

∂ ∂
 (61)
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subject to: 

 0 0| cos , | cos= =

∂ ∂
= =

∂ ∂x t
z zt x
t x

 (62)

 (0, ) sin , ( ,0) sin= =z t t z x x  (63)

That exact solution of this example when 1γ µ= =  is ( , ) sin sin= +z x t x t . When 
1γ µ= =  we obtain 0=Z . Consequently, we get the exact solution of eq. (61) that is 

( , ) sin sin= +z x t x t . Figures 6 and 7 show the numerical solutions for 4=J  different values of γ 
and μ.

Figure 3. Numerical solution for  
example 3 when J = 3  
(for color image see journal web site)

Figure 4. Exact solution for eq. (48) 
(for color image see journal web site)

z(x,t)

t

Figure 5. The numerical solution: 
(dashed) and the exact solution: 
(Red line) for example 3 when J = 3 
(for color image see journal web site)

Figure 6. Numerical solution for eq. 
(61) when = =3/4, 2/3γ µ  (for color 
image see journal web site)

Figure 7. Numerical solution for (61) 
when = =3/5, 1/3γ µ  (for color image 
see journal web site)



Jafari, H., et al.: New Method for Solving a Class of Fractional Partial Differential Equations... 
S286 THERMAL SCIENCE: Year 2018, Vol. 22, Suppl. 1, pp. S277-S286

Conclusion

In the present paper we used operational matrix of fractional integration based on lin-
ear B-spline function to solve the FPDE. We expand the unknown function with chosen polyno-
mial. The problem has been reduced to a system of algebraic equations. Application examples 
show good coincidence of the numerical result with exact solution. We used Mathematica for 
computations.
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