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In this work we suggest a numerical approach based on the B-spline polynomial
to obtain the solution of linear fractional partial differential equations. We find the
operational matrix for fractional integration and then we convert the main prob-
lem into a system of linear algebraic equations by using this matrix. Examples are
provided to show the simplicity of our method.
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Introduction

Over the last decades fractional calculus were not useful application in physics and
mathematical, albeit having a long history. In recent years a number of books [1-5] on fractional
calculus were published.

Compared with ODE, fractional order differential equations (FDE) has arbitrary or-
der derivatives and integrals. Our purpose is essentially useing the linear B-spline functions to
solve PDE in fractional calculus. We paid attention on the following a class of fractional PDE
(FPDE):
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where k,y,,v,,n,,n, are the known function and z(x,7) are the unknown functions. The 6"z/ox”
and 0“z/ot" are the fractional Caputo derivative that is given:
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where I” is Riemann-Liouville integral operator. There are numerous methods to solve FPDE.
These methods include Adomian decomposition method [6], Fractional subequation meth-
od [7], homotopy perturbation method [8], collocation method [9] , homotopy analysis method
[10], He’s variational iteration method [11], and other methods [12-17].

In the current paper, we suggest the linear B-spline operational matrix method to solve
the FPDE. At the first, we approximate z in the eq. (1) by linear B-spline functions of unknown
coefficients. Then using operational matrixes, the eq. (1) convert to a set of algebraic equations.
Recently, FPDE have been solveing using Linear B-splines operational matrix of fractional
derivatives and B-spline wavelet collocation method [14, 18]. Also Haar wavelet method used
to sole these equations [19, 20].

The B-spline function and operational matrixes
for fractional integration
Linear B-spline function on [0,1]

The m™ order cardinal B-spline N, (x) has the knote sequence {...,—1,0,1,...} Also
there are polynomials of order m (degree m —1) between the knots. The B-spline functions for
m 22 on [0,1] has the following form:

1 [ m k m-1
N@= o Z( kj(—l) (x— )" ®)

k=0

where supp[N,, (x)] =[0,m] and for m =1 the characteristic function is N,(x) = y,,,(x). Here,
we apply the linear B-spline function of order 2 in the following form [21]:

2 (o X, x €[0,1),
N,(x)= Z(kj(—l)" (x—k), =42-x, x€[l,2), 9)
k=0 0, otherwise

Let N, (x)=N,(2’x—k),k,jeZ and B, ,(x) =supp[N, ] =close{x: N, #0}.
It can show that their support is:

B, =[27k27Q2+k)], kjeZ (10)

Js
Define the set of indices:
Sj ={k: B, N[0,1]= 0}

According to egs. (9) and (10), the minimum and maximum of {S} are —1 and 2/ —1.
Because support of N, , can be outside of [0,1], so we have to define ¢, , on [0,1]:
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¢_,‘,k = Nj,k (X)Z[O,l](x)a JEZ (11)
The function approximation
We can expand function f(x) by ¢, , for a fixed j=J:
271
f)= Y, (0)=C"0,(x) (12)
k=-1
where the vectors C and @, are:
C=[cﬁl,co,...,c2,,1]T (13)
cDJ (x)= [¢J,71 (%), ¢J,o (x),...s ¢J,2H (x)]T (14)
with
1
CT = D f(x)q)ﬁ(x)dx}o1 (15)
0
and symmetric matrix is given:
IR
12 24
L
| 1 24 6 24
P=J‘CDJ(x)q)§(x)dx=2J—J (16)
0
LI
24 6 24
LIS
L 24 12 d@27 +1)x(27 +1)
Also any function f(x,?) could expand by linear B-spline functions:
2./ -1 2] -1
COEDIDIFAMENOEL MENL MO (17)
i=—1k=-1
where £, = (g, (x),(f (x,0),4,,(1))).
Operational matrix for 1"
Integration of the vector @, leads to:
I'd,(x) =T, (x), (18)

where /7is the (27 +1)x (2’ +1) operational matrix of fractional integration. We obtain the

matrix /7

1= [[®,(x) D] (x)dx = DzjcpJ (x)q)j(x)dx} P

(19)
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where

E= j I'®, (x)®" (x)dx

Ineq. (20), E =[a,, ] isa (2" +1)x (2’ +1) matrix:

1
a,=[1¢,,(08,,(0dx, ik=-1..2"~1
0
and I ¢, , (x) according eq. (11) can be obtain:

2.2 ,
17, () =17 {Z( .j(—l)' [2Jx—(k+i)]+} =

i=0 \ !

-Jr 2. (2 X l+y
2 Z@(—l)[[z’x—mml =

TQ+NG
0, X<2—J,
. k k+1
_ 2,J}, (ZJx—k)yl, 2—J£x<7,
Ir'2+y) A k+2

Q@ x—ky" =2[2"x—(k+1) |, S Sx<

2]

@ x—ky" —2[2/x—(k+0 ] +[2/x -k +2)]"
So that I7¢, ,(x) and I7¢, , (x) obtain:

(y+DQ27xy -7 x)", x<L

~Jy 7
1¥¢J,—l(x) = 1_,(2 12 2
y (r+DQ7xy =2 xy" + Q27 x=1y",
J
0, x< 22J !
277 . 27— 1
¢, ()= ) (27 x=2" +1y*, Sr<oy

(2 x=2" +1y" (2 x=2"y (2 x-2" +y+1)", 1<x

by substituting 7, , (x),k = —1,...,2" =1 ineq. (21), we can find matrix E:
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Numerical solution of FPDE
Consider eq. (1) with conditions (2) and (3). First, we expand
0’z

~ DT (x)ZD (¢
ot ,(D)ZD, (1)

then we have:

I@ (X)ZD, (1)dt +y, (x) =D () ZI'D,, (1) + y, (x) (26)
ox axat

oh axat mj (020, (Odr+y, (1) = O (T 20, )y, (1) (27)

So unknown function z(x,¢) obtain:

2(x,0) = @G ()[I'T ZI'D, (1) + IWz (s)ds +17,(x) (28)

Then we have:

%zlfj 22 ~ 17 [T (0)Z1'D, (1) + v, (x) | = OT ()7 T Z1'D, (1) + 17w, (x)  (29)
X X
gt =1, Zt =17 [ @) Z®, (1) +y, ()] = @ ('] Z17®, (1) + 17, (x) (30)

where g(x,t) =17y, (x)+ Iy, (¢) that can be written:
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g(x,0) = @} (x)GD, (1) €1y
and G=[g, ]isa (27 +1)x (27 +1) matrix. Also we approximate functions k(x,¢) by the linear
B-spline basis:

k(x,t) = T (x)K®D, (1) (32)

Now, by substituting eqs. (29)-(32) into eq. (1), we obtain:
O ()7 ZI'D, (1) + DT ()[I'] ZI# D, (1) + DT (x)GD, (1) = D" ()KD, (1)  (33)
or
({7 Z1' +[1'] Z1™ + G- K} D, (1) =0 (34)
Finally, eq. (33) give linear system of algebraic equations in the following form:
717zl +[1'ZI"" +G-K =0 (35)

So Z can be computed by solving previous system. Consequently, we get the numeri-
cal solution of z(x,?) using eq. (28).

Numerical examples

Now we solve four examples that shows the efficiency of our technique.
Example 1. Analyze the following FPDE [19]:

61/42 61/42 B 4(x3/4t+xt3/4)

+ - s at € 091 36
o At T arGy o el (36)
subject to:
0z 0z
—,50=0, —|_,=0 37
ot o ox o S
z(0,6)=0, z(x,0)=0 (39)

That exact solution is x¢ which is studied by Wang et al. [19] by using Haar wavelet.
Here we applied the linear B-spline function to solve it. By using egs. (26) and (27), we have:

oz 0’z oz (

== dt+=|_~ | DT (x)ZD ,(t)dt = D" (x)ZI'D , (¢ 39
~ !M o j () Z0, (1)dt = © (x) ZI'D, (1) (39)
@—j.a—%dx+%| ~j.CDT(x)Z® O)dx =" (x)[1'] ZD, (¢) (40)
o saxot ot 9 ’ ’ !

So unknown function z(x,#) obtain:
z2(x,t) # @' ()[I'] ZI'D, (£) + 2(0,1) = D ()[I' ] T'ZD, (2) 41
According egs. (29) and (30), we have:
0"z 340z

P I, P IO () Z1'D (1) = D) ()] Z1'D, (¢) (42)
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0"z 34 Oz /4 ¢y T 197 T 19T 773/4
&T:I, azlt (O, ()] ZO, ()} =D, (0[] ZI""D, (1) (43)

Similarly we approximate 4(x**t + xt*"*)/3[(3/4):

4"+ xt™)

rGa) @, (x)KD, (1) (44)

and K =[k, ;]isa (27 +1)x (27 +1) matrix. Now by substituting eqs. (42)-(44) into eq. (36), we
have:

()] Z1'D, (1) + D ()[I'] ZI®,, (1) = D) (0)K D, (1), (45)
or
T ()P zI +[1'] 21 - KD, (1) =0 (46)
Finally, we obtain:
(47 Z1 +[1I' Z1P* - K =0 (47)

That by solving system eq. (47) we can compute Z.
The numerical results for J = 3 and the exact solutions are plotted in figs. 1 and 2, re-
spectively. From figs. 1 and 2 is obvious that numerical solutions converge to the exact solution.

Figure 1. Numerical solution for Figure 2. Exact solution for eq. (36)
example 1 when J =3 (for color image see journal web site)
(for color image see journal web site)

Example 2. Solve the following fractional PDE [19]:
61/32 al/ZZ B F(3)x5/3 . F(3)t5/3

+ = , 0<x, t<1 48
o o T T®RB) | T(2) * “%)
subject to:
oz oz
o o= 2t, P lo=2x (49)
2(0,0)=¢*, z(x,0)=x" (50)

That exact solution is x* + #°.
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This example is studied by Wang et al. [19] using Haar wavelet. Here we applied the
linear B-spline function to solve it. Let 0°z/0xdt ~ @' (x)Z®, (¢) then by using egs. (26) and
(27), we have:
0z 0z 0z t oz
—=|==dt+ = |~ | D) (x)ZD, ()t + —|_,= D (x)ZI'D, (r) + 2x 51
= [, j JDZ®, ()t + -] = @) () ZI'D, (1) (51)

0

o=@, I ZO, (1) +2t (52)

@—jazzdwr% ~j®T(x)Z® e+ &
o Jaxat o9 ! ot

So unknown function z(x,#) obtain:

20, ) = T (O[] Z1'D, (£) + x* + 2(0,£) = DT ()[1'] ZI'D, (t) + x* + £ (53)
Then
1/3
% -1 % ~ P07 (0)Z1'D, (1) + 2x] = D] (O[] Z1'D, (1) + %x” (54)
0"’z oz 2I°(2)
7= I == IO (O[T ZOD, (¢) + 2t} = D" (0)[T'] 217D, () + mt” (55)

Substituting eqgs. (54) and (55) into eq. (48), we have:
O ()PP Z1'D, (6) + ® (0)[1'] Z1"D, (1) =0 (56)
Finally, we obtain:
[P ZI' +[I'] Z1"? =0 (57)

So by solving previous system we achieve z = 0. Consequently by substituting z =0
in eq. (53), we obtain the exact solution of eq. (48) that is z(x,#) = x* + ¢’
Example 3. Now we examine the numerical solution of the FPDE [19]:

Iz N 0"z TQ@X7(*+1) B+

— + , 0<x, <1 (58)
ox" ot rad-y ré-up
subject to:
oz oz
— | =2, —|_,=2x 59
6t |x70 ax | 0 ( )
2(0,6)=1>+1, z(x,0)=x"+1 (60)

That exact solution of eq. (58) is (¢* +1)(x* +1).

Figures 3 and 4 show the approximation and exact solution of z(x,¢) for J =3 when
y=1/2, u=1/3, respectively. The numerical results comparing the exact solution for
x =0.25,J =3 are shown in fig. 5. We can see numerical results converge to exact solution.

Example 4. Now we examine the numerical solution of the FPDE [19]:

0’z 0"z

—+—=cosx+cost, 0<x, t<1 (61)
ox”  ot"



Jafari, H., et al.: New Method for Solving a Class of Fractional Partial Differential Equations...
THERMAL SCIENCE: Year 2018, Vol. 22, Suppl. 1, pp. S277-S286 S285

Figure 3. Numerical solution for Figure 4. Exact solution for eq. (48)
example 3 when J =3 (for color image see journal web site)
(for color image see journal web site)

Figure 5. The numerical solution: BB
(dashed) and the exact solution:

(Red line) for example 3 when J =3
(for color image see journal web site)

16F

14|

0.2 0.4 0.6 0.8 ¢ 1.0
subject to:
iz oz
—|,,=cost, —|,_,=cosx 62
61‘ |x—0 ax | =0 ( )
z(0,¢) =sint, z(x,0)=sinx (63)

That exact solution of this example when y=u=1 is z(x,f)=sinx+sinz. When
y=u=1 we obtain Z=0. Consequently, we get the exact solution of eq. (61) that is
z(x,t) =sin x + sin¢. Figures 6 and 7 show the numerical solutions for J = 4 different values of y
and u.

Figure 6. Numerical solution for eq. Figure 7. Numerical solution for (61)
(61) when y =3/4, u=2/3 (for color when y =3/5, u=1/3 (for color image
image see journal web site) see journal web site)
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Conclusion

In the present paper we used operational matrix of fractional integration based on lin-
ear B-spline function to solve the FPDE. We expand the unknown function with chosen polyno-
mial. The problem has been reduced to a system of algebraic equations. Application examples
show good coincidence of the numerical result with exact solution. We used Mathematica for
computations.
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