
Al-Agha, M.-S., et al.: One-Dimensional Numerical Model for … 
THERMAL SCIENCE: Year 2019, Vol. 23, No. 2B, pp. 1173-1187 1173

ONE-DIMENSIONAL  NUMERICAL  MODEL  FOR  PREDICTION 

OF  JETSAM  CONCENTRATION  IN  SEGREGATING  FLUIDIZED  BEDS 

by 

Mohamed Sobhi AL-AGHA 

a,b

 and Pal SZENTANNAI 

a*

 

a Department of Energy Engineering, Faculty of Mechanical Engineering,  
Budapest University of Technology and Economics (BME), Budapest, Hungary 

b Department of Mechanical Engineering, Faculty of Engineering,  
Kafrelsheikh University, Kafrelsheikh, Egypt 

Original scientific paper 
https://doi.org/10.2298/TSCI170418066A 

The present study introduces an advanced numerical solution of the so-called 
Gibilaro and Rowe equations to describe jetsam axial distribution in stationary 
fluidized beds. The proposed model takes into account the mechanisms responsi-
ble for jetsam movement in binary fluidized beds. This methodology benefits from 
the recent availability of high computational units in optimizing model coeffi-
cients to give the best fit with the experimental data. Fortunately, there is a large 
number of experimental test cases from literature, that can help with scaling the 
model. In such a way, the model has been calibrated via more than 50 experi-
mental cases of different binary mixtures at various operating conditions. There-
fore, it can be considered as a reliable predicting tool for various compositions 
and operating conditions of fluidized beds in many industrial applications. Also, 
comparisons with previously published models have been done. The results have 
shown that the proposed numerical model is in good agreement with the experi-
mental data. 
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Introduction 

Binary mixtures in fluidized beds represent the real situation in most industrial and 

power generation applications. The existence of two or more granular materials of different 

densities and/or of different sizes has a completely different view compared to mono density 

and size materials in the fluidization process. The phenomena of mixing and segregation of 

binary mixtures were experimentally examined in several studies. Recently, on the one hand, 

with the availability of high speed computational facilities and it becomes easier to simulate 

very complex phenomena with reliable accuracy. The 1-D, 2-D, and 3-D models were devel-

oped to give more descriptive information about mixing and segregation of binary mixtures. 

This information can help in scaling from pilot scale test-rig to real fluidized beds. 

On the other hand, it requires, in addition to higher computational facilities, a long 

time for 2-D and 3-D simulations of multicomponent particulate solids in fluidized beds. This 

problem predicts the need for the improvement of the 1-D solutions in parallel to give a rea-

sonable accuracy compared to 2-D and 3-D systems, especially when the study is focusing on 

a certain phenomenon, such as segregation. One of the best models describing the segregation 
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phenomenon was established by Gibilaro and Rowe [1]. 

This model was constructed on the basis of the two-phase 

theory, i. e. considering the existence of the particulate 

material in the bulk and wake phases to indicate the in-

teraction between the bed material and the fluidization 

bubbles as shown in fig. 1. The model described the 

movement of the jetsam particle (the material which 

tends to segregate to the bed bottom during fluidization 

[2]) based on four essential mechanisms, see fig. 1. 

Gibilaro and Rowe (G-R) [1] proposed three differ-

ent analytical solutions for their model equations, namely 

Case 1, Case 2, and Case 3. In each of them they neglect-

ed the effect of one of the four mechanisms responsible 

for the mixing and the segregation phenomena. For ex-

ample, they disregarded the influence of axial dispersion 

in Case 2, compared to the exchange between the two phases. After this step, a lot of efforts 

were carried out to assign G-R model parameters to the physical variables corresponding to 

real operations, such as mixture composition, bed geometry, and fluidization velocity. Chiba 

and Kobayashi [3], Chiba et al. [4] and Tanimoto et al. [5] elaborated mathematical ap-

proaches for estimating G-R model parameters. Their calculations were based on the segrega-

tion distance of jetsam created by single bubble passage as a function of particle size and den-

sity ratios of the mixture. In addition, these calculations also considered the fluidization bub-

ble characteristics from correlations that were described earlier by Nicklin [6] and Kato and 

Wen [7].  

Naimer et al. [8] used these correlations to link the physical operation variables to 

the G-R model parameters in order to apply a general solution to a wide range of operating 

conditions. However, they could not find an estimation for an axial dispersion coefficient. 

Thus, they used the G-R solution which neglected the effect of axial mixing (Case 2) to simu-

late jetsam concentration in the fluidized bed. Nevertheless, their model showed limitations 

with higher total jetsam weight fractions (xj ≥ 0.5) due to axial dispersion of solids being ig-

nored. It was reported by Garcia et al. [9] that the effect of axial mixing cannot be neglected. 

They used the Gibilaro and Rowe [1] analytical solutions (Case 1 and Case 3) that regarded 

axial dispersion mechanism, in their comparison, with experimental data. It was proven that 

the model can give a good agreement if a modified set of coefficient values is introduced in 

the process. But, it was not understood how to choose the suitable analytical solution (Case 1 

or Case 2) in the absence of experimental data. The efforts of Hoffman and Romp [10], and 

Hoffman et al. [11] showed that the model was able to give good predictions without requir-

ing adjustable parameters if suitable correlations had been applied. Abanades et al. [12], and 

Hartholt [13] used numerical solutions of the G-R model based on the initial boundary value 

problem, and the boundary value problem for slugging and bubbling bed, respectively. The 

last trial for the full numerical solution of the G-R model was done by Leaper et al. [14]. The 

test was accounting for all mechanisms responsible for mixing and segregation in the bub-

bling fluidized beds. But they applied their solution only on one set of experimental results, 

on their own measurements. 

In general, the problem of using equations and correlations from literature to esti-

mate the G-R model coefficient is that all the previous correlations have moderate accuracy in 

addition to the limited ranges based on the original experimental investigations. However, the 

 

Figure 1. Schematic diagram of 
segregation mechanisms of the G-R 
model [1] 
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G-R is a 1-D model, therefore, it is very sensitive to the value of model coefficients. Thus, the 

objective of the present study is to improve the G-R full numerical solution model using ex-

perimental data by calibration. For this reason, a large set of experimental cases from the lit-

erature of different mixture compositions at a wide range of fluidization velocities (58 cases) 

has been utilized for model scaling. 

Optimizing the G-R model 

The G-R model 

The G-R model [1] was constructed based on the two-phase theory of Toomey and 

Johnstone [15], which was originally derived by describing the solids movement in the fluidi-

zation process by the action of the rising bubbles. The bubbles circulate the solids by separat-

ing it into two phases. One portion of the solids is drawn to the upper layers of the bed with 

the bubbles (wake phase), and the rest is reacting to refill the volume which was occupied by 

the rising bubbles (bulk phase). The theory was applied to binary fluidized beds containing 

heavier particles of high density and/or size (jetsam) and lighter particles of small density 

and/or size (flotsam). The G-R model is based on the following assumptions: 

– the space occupied by the bubbles is ignored, 

– the volumetric flow rate of solids is constant along all horizontal planes through the bed, 

– the amount of segregation occurring at any point is proportional to the jetsam concentra-

tion at that particular point, and 

– the jetsam transport in the binary bed is caused by four mechanisms (see fig. 1): axial 

mixing, axial segregation, circulation at the top and bottom of the bed, and exchange be-

tween the bulk and wake phases. 

Based on the previous assumptions, jetsam balances can be formulated on a typical 

bed element of height dZ for both phases considering all four jetsam transport mechanisms. 

The differential equations derived from these two elemental balances become [1]: 
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where CB and Cw are the jetsam concentration in the bulk and wake phases along the axial di-

rection, respectively, and β, γ, and λ are further analytical parameters. They are defined in the 

paper setting up this theoretical model [1], and their phenomenological essences can be sum-

marized: 

– the β provides a measure of the rate of axial mixing relative to the rate of segregation as a 

fraction of volumetric flow rates, 

–  the γ is the ratio of the bulk/wake phase exchange volume flow rate and solid circulation 

volume flow rate, and 

– the λ is the fraction of solid circulation volume flow rate and segregation volume flow 

rate. 

Consequently, the average volume and mass concentrations of jetsam can be calcu-

lated [1]: 

 Cave = (1 – fw)CB + fwCw (3) 
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where fw is the volumetric fraction of all solids in the wake phase.  

Gibilaro and Rowe [1] made some mathematical simplifications for solving these 

differential equations analytically by ignoring one or two mechanisms in each case. In this 

way, they extracted three analytical solutions, namely Case 1, Case 2, and Case 3. In each of 

them they neglected one or two of the mechanisms responsible for the mixing/segregation 

phenomena. A brief overview and re-representation of these cases is given in Appendix A. 

The present numerical solution 

We propose and introduce an overall numerical solution of eqs. (1) and (2) on the 

basis of the 4th order Runge-Kutta method (initial boundary value problem, see Nakamura 

[16]). The initial boundary values for the bulk and wake jetsam concentrations, as well as the 

bulk phase gradient at the bottom of the bed (Z = 0), are estimated from eqs. (A5), (A6), and 

(A7) as in the G-R analytical solution (Case 3, Appendix A): 
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 Cw0 = CB0 (6) 

where Cw0 and CB0 are the wake and bulk phases concentration at the bottom of the bed. 

Model calibration 

The model calibration procedure is shown in fig. 2, clarifying the sequence of the 

individual calculation steps. As visible, this is a loop of iteration in four variables, and it in-

ternally includes the numerical solving of the set of differential eqs. (1) and (2). The variables 

of the external loop are the analytical parameters β, γ, and λ of the differential equations, and 

fw, the parameter of the algebraic eq. (3). 

It is to mention here that the goal of the current work is to calculate the best fitting 

values of these four free parameters of the G-R model. These parameters are strongly influ-

enced by many physical parameters of the particular experimental set-up (fluidization veloci-

ty, fluidization number, e. g.), however, formulating these dependencies is beyond the scope 

of the actual paper.  

This method uses the actual standard deviation value, which is defined: 

 

2
ave,i ave,m

1
st

( )

1

n

C C

n








 (7) 

where Cave,i and Cave,m are the numerical and experimental average jetsam concentration val-

ues at a given point, respectively, while n is the number of data points, the standard deviation 

would be calculated for. The vital role of using experimental data in identifying the optimum 

model coefficients is evident, and it is also clearly visible in this figure.  
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Figure 2. Flow chart of the calibration procedure of the proposed model 

The data were taken from a high number of available publications so that the best fit 

with true experiments could be reached, and the entire procedure could be verified. While a 

similar procedure of varying the analytical model parameters was carried out by Garcia et al. 

[9], and although the fit found was very much appropriate in some cases, in several other cas-

es only low accuracy could be reached. 

An additional general problem of these approaches is that the experimental data are 

sometimes not fully available, consequently it cannot be decided whether the actual case is 

subject to the theoretical models of Case 1 or Case 3. This leads to the necessity of formulat-

ing a general and applicable full numerical solution that can be valid over a considerable 

range of operating conditions. The results of this general numerical model can be seen in the 

next section.  
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Results and outlook 

The results of the calibration and validation procedure of the previous model on all 

the published data found are summarized in tab. 1. This table shows the set of model coeffi-

cients that fit best with the experimental data from literature for different mixture composi-

tions and fluidization velocities. The optimized-coefficient solutions, see figs. 3-5, fit very 

Table 1. The G-R model coefficients of best fit with experimental data from literature 

Experimental conditions Best fit model parameters 

# 
xj 

[–] 
ρj

[kgm–3] 
ρf 

[kgm–3] 
dj

[mm] 
df 

[mm] 
H 

[m] 
D 

[m] 
u 

[ms–1] 
β 

[–] 
λ 

[–] 
fw 

[–] 
γ 

[–] 
Ref. 

1 0.10 8860 2950 0.273 0.461 – 0.147 0.336 0.012 0.001 0.001 0.050 [8] 

2 0.20 2476 1064 0.231 0.231 – 0.120 0.059 0.0085 0.040 0.050 0.950 
[18] 

3 0.25 2476 1064 0.116 0.275 – 0.184 0.036 0.012 0.060 0.035 0.850 

4 0.25 2200 1400 4.000 4.000 – 0.114 1.600 0.002 0.210 0.033 0.300 

[9] 5 0.25 1400 920 4.000 4.000 – 0.114 1.380 0.004 0.250 0.200 0.050 

6 0.25 2200 920 4.000 4.000 – 0.114 1.420 0.003 0.680 0.006 0.020 

7 0.25 2476 2476 0.116 0.275 – 0.184 0.062 0.007 0.150 0.110 0.050 
[18] 

8 0.25 2476 1064 0.11 0.275 – 0.184 0.066 0.012 0.075 0.001 0.200 

9 0.40 8860 2950 0.273 0.461 – 0.147 0.337 0.020 0.052 0.005 0.750 
[8] 

10 0.40 8860 2950 0.273 0.461 – 0.147 0.650 0.015 0.075 0.125 0.850 

11 0.50 8750 2510 0.235 0.565 0.160 0.146 0.290 0.016 0.130 0.005 0.500 
[11] 

12 0.50 8750 2510 0.235 0.565 0.160 0.146 0.330 0.014 0.140 0.045 0.500 

13 0.50 2200 1400 4.000 4.000 – 0.114 1.600 0.034 0.135 0.001 0.950 

[9] 

14 0.50 1400 920 4.000 4.000 – 0.114 1.300 0.012 0.100 0.010 0.800 

15 0.50 2200 920 4.000 4.000 – 0.114 1.460 0.036 0.110 0.020 0.950 

16 0.50 2200 920 4.000 4.000 – 0.114 1.180 0.058 0.120 0.002 0.300 

17 0.50 2200 920 4.000 4.000 – 0.114 1.300 0.024 0.350 0.270 0.950 

18 0.50 2200 920 4.000 4.000 – 0.114 1.370 0.036 0.110 0.020 0.950 

19 0.50 2200 920 4.000 4.000 – 0.114 1.460 0.003 0.120 0.310 0.100 

20 0.50 2200 1400 4.000 4.000 – 0.114 1.680 0.015 0.200 0.270 0.950 

21 0.50 8650 2490 0.273 0.281 0.082 0.146 0.282 0.015 0.350 0.090 0.850 

22 0.50 8650 2490 0.273 0.281 0.082 0.146 0.298 0.015 0.200 0.270 0.950 

23 0.50 8650 2490 0.273 0.281 0.082 0.146 0.312 0.015 0.200 0.280 0.950 

24 0.50 8650 2490 0.273 0.281 0.082 0.146 0.327 0.020 0.400 0.100 0.500 [13] 

25 0.50 8650 2490 0.273 0.281 0.082 0.146 0.346 0.016 0.280 0.270 0.550 

26 0.50 11320 2490 0.112 0.281 0.120 0.146 0.119 0.038 0.290 0.140 0.950 
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Table 1. Continuations 

Experimental conditions Best fit model parameters 

# 
xj 

[–] 
ρj

[kgm–3] 
ρf 

[kgm–3] 
dj

[mm] 
df 

[mm] 
H 

[m] 
D 

[m] 
u 

[ms–1] 
β 

[–] 
λ 

[–] 
fw 

[–] 
γ 

[–] 
Ref. 

27 0.50 11320 2490 0.112 0.281 0.120 0.146 0.146 0.012 0.195 0.005 0.400 

28 0.50 11320 2490 0.112 0.281 0.120 0.146 0.174 0.040 0.030 0.470 0.950 

[13] 29 0.50 11320 2490 0.112 0.281 0.120 0.146 0.190 0.020 0.370 0.300 0.250 

30 0.50 11320 2490 0.112 0.281 0.120 0.146 0.255 0.015 0.200 0.280 0.950 

31 0.50 2476 1064 0.116 0.275 – 0.120 0.045 0.016 0.270 0.018 0.850 

32 0.50 2476 2476 0.231 0.116 – 0.120 0.054 0.012 0.050 0.470 0.050 

33 0.50 2476 2476 0.231 0.116 – 0.180 0.054 0.0095 0.390 0.180 0.050 

34 0.50 2476 1064 0.231 0.231 – 0.120 0.076 0.022 0.120 0.060 0.500 

35 0.50 2476 1064 0.116 0.275 – 0.184 0.049 0.019 0.250 0.015 0.600 [18] 

36 0.69 2476 1064 0.116 0.275 – 0.184 0.029 0.020 0.490 0.015 0.950 

37 0.69 2476 1064 0.116 0.275 – 0.184 0.038 0.016 0.450 0.005 0.350 

38 0.69 2476 1064 0.116 0.275 – 0.184 0.045 0.010 0.380 0.140 0.200 

39 0.69 2476 1064 0.116 0.275 – 0.184 0.056 0.016 0.130 0.410 0.850 

40 0.50 4500 2600 0.180 0.120 – 0.150 0.017 0.012 0.620 0.070 0.300 

41 0.50 4500 2600 0.180 0.120 – 0.150 0.022 0.012 0.060 0.035 0.850 [14] 

42 0.50 4500 2600 0.180 0.120 – 0.150 0.034 0.019 0.250 0.015 0.600 

43 0.50 4500 2600 0.180 0.120 – 0.150 0.030 0.020 0.500 0.120 0.850 

44 0.70 8860 2950 0.273 0.461 – 0.147 0.336 0.055 0.008 0.075 0.950 [8] 

45 0.75 8750 2510 0.235 0.565 0.160 0.146 0.525 0.010 0.090 0.410 0.900 [11] 

46 0.75 2200 1400 4.000 4.000 – 0.114 1.610 0.116 0.230 0.200 0.900 

47 0.75 2200 1400 4.000 4.000 – 0.114 1.690 0.046 0.370 0.100 0.200 

48 0.75 1400 920 4.000 4.000 – 0.114 1.120 0.062 0.010 0.490 0.050 

49 0.75 1400 920 4.000 4.000 – 0.114 1.300 0.062 0.130 0.500 0.050 

50 0.75 1400 920 4.000 4.000 – 0.114 1.500 0.008 0.250 0.340 0.100 [9] 

51 0.75 2200 920 4.000 4.000 – 0.114 1.380 0.020 0.052 0.005 0.750 

52 0.75 2200 920 4.000 4.000 – 0.114 1.380 0.015 0.075 0.125 0.850 

53 0.75 2200 920 4.000 4.000 – 0.114 1.600 0.012 0.001 0.001 0.050 

54 0.75 2200 920 4.000 4.000 – 0.114 1.700 0.055 0.005 0.075 0.950 

55 0.75 2476 2476 0.231 0.116 – 0.120 0.042 0.012 0.180 0.700 0.050 

56 0.75 2476 1064 0.231 0.231 – 0.120 0.078 0.0115 0.620 0.070 0.300 [18] 

57 0.75 2476 1064 0.116 0.275 – 0.184 0.028 0.018 0.560 0.040 0.800 

58 0.75 2476 1064 0.116 0.275 – 0.184 0.051 0.003 0.410 0.290 0.100 

well with the experimental data of different operating conditions. It was not possible, howev-

er, to show graphically all the model-fitting results. That is why a systematic selection was 
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concluded with the goal of showing representative diagrams on a wide range of cases and ex-

perimental parameter values. 

Figure 3 shows markedly mixed cases of different fluidized bed systems under sig-

nificantly diverse operating conditions. A characteristic of this situation is the almost vertical 

concentration profile along the bed height. 

 

Figure 3. Sample results of the present model (continuous lines) together with the experimental data 
points (symbols) in some markedly mixed cases. If the original paper also includes an own model it is 
shown by dashed lines. Experimental conditions given in tab. 1, the first column of which (#) are 
referenced by the previous subfigure identifiers 

Figure 4, on the other hand, shows markedly segregated cases. A common character-

istic of these concentration profiles are their sharp s-shaped appearances indicating a separa-

tion line between the jetsam-rich zone at the bottom and the flotsam-rich zone on the top. The 

vertical position of the central point of this separation line is called the segregation distance or 

the height of the jetsam-rich layer. 

The model of the present study is also capable for describing the intermediate cases 

between the markedly mixed and markedly segregated ones, as shown in fig. 5. The concen-

tration profiles are rather complex in these cases, containing inclined (not vertical) lines and 

denser bottom jetsam concentrations. 

An useful overview of the results would be a systematic change of single parameters 

at a time, of course. It could be done on the model itself, but we always wanted to compare 

the calculated results with measured data. Because the big number of published experiments 

we are referring to were not carried out according to this logic, such a pure visualization of 

the effects cannot be done here. However, some effects of the most important experimental 

parameter changes can be well observed on the concentration profiles shown in figs. 3-5 as  
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Figure 4. Sample results of the present model (continuous lines) 
together with the experimental data points (symbols) in some 

markedly segregated cases. If the original paper also includes an 
own model it is shown by dashed lines. Experimental conditions 

given in tab. 1, the first column of which (#) are referenced by the 
previous subfigure identifiers 

 

 

Figure 5. Sample results of the present model (continuous lines) 
together with the experimental data points (symbols) in some 

intermediate mixing/segregation cases. If the original paper also 
includes an own model it is shown by dashed lines. Experimental 

conditions given in tab. 1, the first column of which (#) are 
referenced by the previous subfigure identifiers 
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follows. (For better visualization they could be put next to each other, however, we did not 

want to increase the length of this paper by such repeated representations of existing dia-

grams.) The effect of fluidization velocity can be observed by comparing subfigures #20 and 

#49 (of figs 3-5) e. g., which clearly show that an increased velocity results in an advanced 

mixing. The effect of particle size ratio dj/df was studied before experimentally [17] and found 

to be an almost negligible influence compared to the particle density ratio ρj/ρf, as clearly rec-

ognizable by comparing subfigures #32 and #20. A similarly negligible effect is the bed di-

ameter, as visible by comparing the cases #32 and #33. 

The versatility of the cases found and used for validating the present model can be 

further illustrated by mentioning that cases #20, #45, and #49 are characterized by high fluidi-

zation velocities, while case #3, #42, and #57 demonstrate the opposite end. The overall jet-

sam concentration in the selected cases range from 0.1 in #1 through 0.5 in #11 up to 0.75 in 

#45. 

Throughout the numerical calibration process, it was observed that the present appli-

cation of the G-R model is very sensitive to both model coefficients and initial values of the 

variables under numerical integration. Thus, better predictions can be achieved if more proper 

initial boundary conditions can be introduced, that is, better estimates for the initial bulk and 

wake volume fractions CB0, Cw0, and the initial bulk axial gradient dCB/dz│0. 

As an outlook towards further development of the G-R model, its generalization can 

be mentioned. The main goal of the development is to find a general and applicable integra-

tion method realizing a link between the model parameters and the physical operational pa-

rameters. Fortunately, previous studies have clarified the influence of most of these parame-

ters, such as fluidization velocity, mixture composition, and bed geometry. The problem faced 

is that, in many cases, some important parameters, such as bed aspect ratio, bed cross-section, 

and minimum fluidization velocities have not clearly been given in the investigated publica-

tions. Moreover, calculating their estimated values on the basis of available geometrical data, 

densities, and other characteristics, is a rather difficult task. For example, we have tested three 

commonly used correlations on the basis of a paper [16] to determine the minimum fluidiza-

tion velocity of two granular materials with both the measured umf values and the data re-

quired by the predicting equations. Table 2 in Appendix B shows the predictions of each equa-

tion and the relative errors compared to their measured data. It is clear from this table that the 

absolute error of these correlations (ranging from –98% to +95%) makes them unreliable in 

the investigated cases, due to this absolutely vital parameter, the minimum fluidization veloci-

ty. Thus, the best way to overcome this problem seems to have our own measurements on the 

same bed material. 

Conclusions 

In the present study, a full numerical solution of the G-R model was introduced and 

demonstrated. The model was calibrated by using a large set of experimental data from previ-

ously published works applicable for different bed compositions and fluidization velocities. 

The study also included comparisons with other theoretical models from literature, and the 

present model proved a significant step forward in the field. 

The key improvements and benefits of the presented model compared to the availa-

ble ones including the G-R model are the following. 

 It considers all four mechanisms described in the theoretical G-R model. (The analytical 

solutions always neglect some of them to make the integration possible.) 

 It contains an optimal parameter seeking procedure. 
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 It is applicable for all mixing/segregation cases covered by wide parameter ranges. 

 It performs better in many cases – especially in the intermediate mixing/segregation cases. 

It was also observed that the G-R model accuracy is very sensitive to the model co-

efficients and the initial boundary conditions. 

To make a more general and applicable solution in the future, a mathematical link 

between the model coefficient and the physical parameter should be established. The present 

study was an important step towards this purpose, and it became evident that the main obsta-

cle, in most cases, was lying in the shortage of the descriptive conditions of the previously 

published works. For example, very few studies reported on the minimum fluidization veloci-

ty, even though this is a much important variable related to the model coefficient. Although 

there is a large number of existing studies on correlating equations for minimum fluidization 

velocity available, in general, in most cases they cannot be applied due to their high deviation. 

Nomenclature 

C – local jetsam volume fraction, [–] 
D – bed diameter, [m] 
d – particle diameter, [mm] 
fj – total volumetric fraction of jetsam  

in the bed, [–] 
fw – volumetric fraction of solids in the wake 

phase, [–] 
g – coefficient of jetsam concentration term  

(CB – Cw), [–] 
H – total bed height, [m] 
k – segregation coefficient, [m3s–1] 

q – exchange coefficient, [m3s–1] 

r – axial mixing coefficient, [m3s–1] 

U – velocity, [ms–1] 
u – fluidization velocity, [ms–1] 
umf – minimum fluidization velocity, [ms–1] 
w – circulation coefficient, [m3s–1] 

X – local jetsam mass fraction, [–] 
xj – total jetsam weight fraction in the mixture, [–] 
Z – dimensionless bed height, [–] 
Greek symbols 

js – particle’s phericity, [–] 

m – dynamic viscosity, [Pa.s] 
β – coefficient of jetsam concentration  

axial gradient (= r/kH), [–] 
γ – phase exchange to circulation coefficient  

(= qH/w), [–] 
ε – bed porosity, [–] 
λ – circulation to segregation coefficient  

(= w/k), [–] 
ρ – bulk density, [kgm–3] 
σ – standard deviation, [–] 

Subscripts 

ave – average 
B  – in the bulk phase 
f – flotsam 
g – gas 
j – jetsam 
mf – minimum fluidization 
p – particle 
w  – in the wake phase 

Appendix A. Analytical solution cases  

of the G-R model 

To allow analytical solving of the G-R model eqs. (1) and (2) [1], in some practical 

cases, they proposed a portion of mathematical simplifications by ignoring one or two mecha-

nisms. A brief overview and re-representation of these cases is given in this Appendix. 

Case 1, Negligible axial mixing and phase exchange 

 Case 1A, Vigorous fluidization 

In a vigorously fluidized system the influence of both axial mixing and phase ex-

change can be supposed to be negligible compared to circulation and segregation. In this case 

the jetsam concentration is [1]: 
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where fj and xj are the total volumetric fraction, total weight fraction of jetsam present in the 

bed, while ρj and ρj are the bulk densities of jetsam and flotsam, respectively. 

Case 1B, Weak fluidization 

In this case there is only one parameter controlling the concentration regimes name-

ly critical bed height, Z*, which is defined by: 
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Thereafter, the jetsam concentration can be calculated [1]: 

Z* > Z ≥ 0,  CB = 1 

Z = Z*,  CB = (l+1)/2 

1 ≥ Z > Z*,  CB = l 

Case 2, The additional effect of exchange between the phases 

In this case, eq. (1) is integrated, neglecting the effect of the axial mixing compared 

to the exchange between the two phases. Therefore, the jetsam distribution will be [1]: 
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where λ is the circulation/segregation coefficient. 

Case 3, The effect of axial mixing in the bulk phase 

By neglecting the exchange term γλ(Cw – CB), eq. (1) reduced to the following sim-

plified differential equation [1]: 
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where 
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Table 2. Accuracy of minimum fluidization velocity predictions using correlations from literature 
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Reference measurements 

 Measurement details 

umf 
measu-

red, 
[ms–1] 

 

umf 
measu-

red, 
[ms–1] 

 

 

ρs = 2476 kg/m3; ρg = 1 kg/m3; 
dp = 0.116 mm; μg = 1.83e-5 Pa·s; 

lead-free glass 
Further details, reference: [16] 

0.018    

 

ρs = 1064 kg/m3; ρg = 1 kg/m3 
dp = 0.231 mm; μg = 1.83e-5 Pa·s 

Polystyrene 
Further details, reference: [16] 

  0.029  

Predicting equations and relative errors 

Ref Equation 

umf 
predic-

ted, 
[ms–1] 

error 

umf 
predic-

ted, 
[ms–1] 

error 

[19] 

1

3 2
g p g s g2

mf 2
g p g

( )
33.7 0.0408 33.7

d
u

d

   

 

 
   
    
   
  

 0.0011 –93.9% 0.0019 –93.5% 

[20] 

 
2

g mf mf
mf

g p s s

3 3
s mf p g s g

2
g

150(1 ) 150 1

3.5 3.5

1.7

( )

( )

5

u
d

gd

  

  

    



     
    

 

 
 






 
0.0334 +85.5% 0.0565 +94.9% 

[21] 

– for glass: 
0.89029 0.18880

1.232
p s g7 s

mf
g g

(4.338
(

4 10
)

)
gd

u
  

 




 
  
 


 
 
 
  

 

– for polystyrene: 
0.59460 0.01730

1.232
p s g4 s

mf
g g

(
(2.1308 10

)
)

gd
u

  

 




 
  
 


 
 
 
  

 

0.0005 –97.3% 0.0172 –40.8% 



Al-Agha, M.-S., et al.: One-Dimensional Numerical Model for … 
1186 THERMAL SCIENCE: Year 2019, Vol. 23, No. 2B, pp. 1173-1187 

 

1

2 2
B0[( 1) ]4P C     (A8) 

 B0
2

B0

1 2

1 2

C P
B

C P





  


  
 (A9) 

 2
B0 j w

w 2

1 e
( )

1 1
1 ln

2 1

P

BP
C f f

f B




 
 
 
  

 
  

    
 

   

 (A10) 

Appendix B. Review of models for predicting umf,  

minimum fluidization velocity 

Due to the lack of the minimum fluidization velocity data on mixing and segregation 

in binary fluidized beds in most publications, a calculation method to determine them is nec-

essary. Table 2 gives an overview of the models found in the literature. This table also com-

prises a comparison of predictions with some available measured data of each model, taken 

also from the literature. It seems to be evident from this table that the absolute error of these 

correlations (ranging from –98% to +95%) makes it very difficult to substitute the lacking 

umf data by predicted ones in order to develop a mixing-segregation model. 
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