
Brohi, A. A., et al.: Validation of Accuracy and Stability of Numerical Simulation for ... 
THERMAL SCIENCE: Year 2017, Vol. 21, Suppl. 1, pp. S97-S104	 S97

VALIDATION  OF  ACCURACY  AND  STABILITY  OF  NUMERICAL  
SIMULATION  FOR  2-D  HEAT  TRANSFER  SYSTEM   

BY  AN  ENTROPY  PRODUCTION  APPROACH

by

Ali Anwar BROHI  a,b, Haochun ZHANG  a*,  
Kossi Aniya Amedome MIN-DIANEY  a, Muhammad RAFIQUE  a,b,  

Muhammad HASSAN  a, and Saadullah FAROOQI  a
a School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China 

b Mehran University of Engineering and Technology, Shaheed Zulifqar Ali Bhutto,  
Campus, Khairpur Mir’s, Sindh, Pakistan

Original scientific paper 
https://doi.org/10.2298/TSCI17S1097B

The entropy production in 2-D heat transfer system has been analyzed systemati-
cally by using the finite volume method, to develop new criteria for the numerical 
simulation in case of multidimensional systems, with the aid of the CFD codes. The 
steady-state heat conduction problem has been investigated for entropy produc-
tion, and the entropy production profile has been calculated based upon the current 
approach. From results for 2-D heat conduction, it can be found that the stability 
of entropy production profile exhibits a better agreement with the exact solution 
accordingly, and the current approach is effective for measuring the accuracy and 
stability of numerical simulations for heat transfer problems.
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Introduction 

It seems to be revolutionary changes in the field of heat transfer and flow of fluids in 
this world of advanced technology. The concept of entropy production through heat transfer 
plays pivotal role in this change. Due to occurrence of this in many industrial applications such 
as heat transfer systems, high temperature working conditions and so on, the entropy produc-
tion mechanism has essential importance in the field of engineering and science. The recent 
progress in the field of CFD, together with numerical heat transfer has becoming important 
in-order to analyze the systems involving heat transfer and fluid flow. Many researchers used 
numerical approaches based on computer softwares and suitable algorithms to understand the 
mechanism of heat transfer approaches because of their simplicity instead of experimental [1]. 
The travelling-wave solution for the non-linear transient heat conduction was proposed in [2, 
3]. A finite difference scheme was developed based on parabolic equations for solving the mi-
cro-heat transport equations in a 3-D double-layer thin film and in a double-layer microsphere, 
respectively [4]. The numerical solution for the linear heat transfer problem was considered 
in [2]. The iterative differential quadrature method was proposed for the time-dependent 1-D 
non-linear heat conduction problem [5]. An informative entropy approach was discussed to 
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evaluate the error caused by spatial discretization by numerical uncertainty for the radiative 
transfer [6, 7] 

Entropy production associated with the heat transfer and fluid flow was briefly dis-
cussed based on methodology of the entropy generation minimization along with the funda-
mental equations for entropy production [8-10]. The CFD analysis was carried for the entropy 
production rates based on the turbulent convective heat transfer problems [11] with the use 
of the direct and indirect methods. In direct method the local part of the entropy production 
were calculated with the help of the basic thermodynamics equations by finite volume method 
(FVM), they involved some approximations for turbulence modeling whereas in indirect meth-
od they used time averaged entropy balance equation along with the approximations. Moreover, 
the accuracy and stability of the numerical simulation for the problems of the fluid flow and 
heat transfer was investigated via the entropy production method. Their approach effective for 
measuring the accuracy and stability of numerical simulation for the heat transfer and fluid 
flow related problems was provided in [12]. The numerical investigations were carried out for 
the heat transfer and fluid by being estimated the total entropy generation rate over turbulent 
dissipation, viscous direct dissipation, heat transfer and inner phase change during different 
stages [13, 14].

The main aim of this paper is to study the 2-D steady heat conduction problem instead 
of 1-D system to investigate the accuracy and stability of a certain numerical simulation tech-
nique with the use of FVM.

Numerical methodology

Governing equation for entropy production

The total entropy production for 3-D flow field is given by [9]:
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where '''
PS  represents the total entropy production, T  is the temperature, k  – the thermal con-

ductivity, xv  – the velocity vector along x-axis, and yv  – the velocity vector along y-axis.
The previous equation is composed of two parts: the first part shows the entropy pro-

duction caused by the finite temperature gradient temperatureS , while the second part of the equation 
shows the entropy production caused by the finite velocity gradient velocityS .

So, eq. (1) can be written:

	 '''
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and
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We now consider the 2-D heat transfer and assume that velocity is independent of the 
location. Since the term velocityS  becomes zero, eq. (1) becomes:

	
22

2
'''

P
k T T

T y
S

x

  ∂ ∂ = +   ∂ ∂    

 	 (3)

Equation (3) is called the governing equation of the entropy production. 

Governing equation for the heat transfer

The 3-D unsteady convective heat transfer in the Cartesian co-ordinate system with 
the internal heat source is given by [15]:
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T T T T T T Tc u v w k
t x y z x y z ∅ρ

  ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂   
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where ρ  is the fluid density, pc  – the specific heat at constant pressure, k  – the thermal con-
ductivity, and S∅  – the heat generation source.

Hence for the 2-D steady heat-conduction without heat generation, eq. (4) can be 
simplified:

	
2 2

2 2 0T T
x y

∂ ∂
+ =

∂ ∂
	 (5)

Numerical scheme

In-order to derive the discretized equation for 2-D system, we consider the 2-D steady-state 
diffusion equation given by [1],

	 S 0
x x y y

ϕ ϕτ τ ∅

 ∂ ∂ ∂ ∂  + + =  ∂ ∂ ∂ ∂   
	 (6)

where ϕ  is the value of property per unit mass, τ  – the diffusion coefficient, and S∅  – the source 
term.

For simplicity let us consider a portion of 
the 2-D grid used for the discretization is shown 
in fig. 1.

We need to apply the following steps for 
getting discretized equation for 2-D system by 
the FVM.

In the first step is to divide the domain 
into discrete control volumes and substitute 
a number of nodal points in the space. The 
boundaries (or faces) of control volumes are 
positioned mid-way between adjacent nodes. 
Thus, each node is surrounded by a control vol-
ume or cell. Let us take a general grid node, P, surrounded by four adjacent neighbor grids 
namely east (E), west (W), north (N ), and south (S) neighbors, respectively. It is common 
practice to set up control volumes near the edge of the domain in such a way that the physical 
boundaries coincide with the control volume boundaries.

Figure 1. Part of 2-D grid
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The east side face of the control volume is denoted by e, the west side face of the 
control volume is denoted by w, the north side face of the control volume is denoted by n, and 
the south side control volume face is referred by s. The distances between the nodes W and P, 
P and E, P and N, and between nodes P and S, are identified by PWxδ , PExδ , and SPxδ , respec-
tively. From fig. 1, it is clear that we PW PEx x x xδ δ δ∆ = = =  and ns PN SPy x x xδ δ δ∆ = = = .

When eq. (6) is formally integrated over the control volume, we obtain:

	 d d d d S d 0
V V

V V
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x x x x
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When e wA A x= = ∆  and n sA A y= = ∆ , we get:
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We can write expressions for the flux through control volume faces.
The flux across the west face is:

	 P W
w w w w

PWw

A A
x x

ϕ ϕϕτ τ
δ
−∂  = ∂ 

	 (9)

The flux across the east face is:
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The flux across the south face is:
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The flux across the north face is:
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By putting eqs. (9)-(12) in eq. (8), we get:
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In the practical situations, as illustrated later, the source term S  may be a function of 
the dependent variable. In such cases the FVM approximates the source term by means of a 
linear form:

	 u p PS V s s ϕ
−

∆ = + 	 (14)

Substituting eq. (14) in eq. (13) and rearranging the terms, we will get:
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The generalized form of previous equation can be written:

	 P P W W E E S S N N ua a a a a Sϕ ϕ ϕ ϕ ϕ= + + + + 	 (16)

The relationships among the discretized coefficients are listed in tab. 1.

Table 1. Discretized coefficients at corresponding nodes
aW aE aS aN aP Su
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δ W E S Na a a a+ + + W E S N pa a a a S+ + + −

Geometrical model

We consider a thin square metal plate 
with the dimensions 1 cm by 1 cm (length by 
width) for the 2-D steady-state heat conduction 
problem and the thermal conductivity of metal 
plate is k = 237. Two adjacent boundaries (edg-
es) are maintained at the temperature 300 and 
the heat on the other boundaries increases lin-
early from the temperatures 300 to 500 where 
the sides meet as shown in fig. 2.

In order to find the temperature distribu-
tion and entropy production, we use the FVM 
to divide a metal plate into the many sub-vol-
ume nodal networks. After that, we apply the 
basic governing equations solved by the FVM.

Results and discussion

The temperature distribution and entropy production of the 2-D heat-conduction prob-
lem for the grid ratio r = 0.5 have been calculated and displayed in graphs as shown in fig. 3, 

Length
300 K

30
0 

K
W

id
th

500 K

Figure 2. The profile of thin metal plate
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Figure 3. The temperature and entropy production profile of the 2-D heat-conduction 
problem for the non-uniform grid at r = 0.5
(for color image see journal web site)
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and fig. 4. It is shown that entropy production is always presented in the heat conduction prob-
lems, and that the numerical results of the temperature and entropy profile converges to its exact 
result in a satisfactory manner along x-axis because of the increased number of the nodal points.

Figure 5 illustrate an unsatisfactory convergence towards exact result, while fig. 6 
give a satisfactory convergence towards the exact result. It is clear that we get a better conver-
gence of numerical result towards the exact result along y axis of the metal plate since the nodal 
points are more in number as compared to x-axis.
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Numerical result (x = 0.375 cm)
Exact result (x = 0.375 cm)
Numerical result (x = 0.625 cm)
Exact result (x = 0.625 cm)
Numerical result (x = 0.75 cm)
Exact result (x = 0.75 cm)

Numerical result (x = 0.25 cm)
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Numerical result (x = 0.625 cm)
Exact result (x = 0.625 cm)
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Figure 4. The temperature and entropy production profile of the 2-D heat-conduction 
problem for non-uniform grid at r = 0.5 
(for color image see journal web site)

Figure 5. The temperature and entropy production profile of the 2-D heat-conduction 
problem for the non-uniform grid at r = 2 
(for color image see journal web site)
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As shown in fig. 7, it is demonstrated that the entropy production tends to zero as 
the temperature difference comes closer. The numerical result of entropy production profile 
converges towards exact result in a better way if the temperature difference goes in decreasing 
manner near the wall. 

Conclusion

In this work, the accuracy and stability of the numerical simulation for the 2-D heat 
transfer system for the entropy production were investigated. The FVM is adopted to analyze 
the 2-D heat conduction problems. The entropy production profile for the 2-D heat conduction 
system was calculated and displayed. The results revealed that the convergence of numerical 
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solution has a better agreement towards the exact solution at r = 1 instead of r = 0.5 and r = 2. 
Thus, it was found that the accuracy of the numerical result for the entropy production profile 
depends upon the grid size; it is to say, as the number of grid size increases, the better con-
vergence of numerical solution will be experienced towards the exact solution. Moreover, the 
entropy production profile has not always a positive correlation with the temperature gradient. 
As the temperature difference between the nodes comes closer, the entropy production tends to 
zero.
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Nomenclature
cp	 –	specific heat constant, [Jkg–1K–1]
k	 –	thermal conductivity, [Wm–1K–1]
S∅	 –	heat generation, [J]
vx vy	 –	velocity components [ms–1]
Δx, Δy	 –	grid size in x- and y-directions, [–]

Greek symbols

μ	 –	viscosity of the fluid, [Pa∙s]
ρ	 –	fluid density [kgm–3]
φ	 –	value of property per unit mass, [–]

Figure 6. The temperature and entropy production profile of the 2-D heat-conduction 
problem for the non-uniform grid at r = 2 
(for color image see journal web site)
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Figure 7. The temperature and entropy production profile of the 2-D heat-conduction 
problem at r = 1 
(for color image see journal web site)
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