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Abstract: This article deals the entropy generation due to mixed convective flow 

of two non-miscible and electrically conducting fluids streaming through an 

inclined channel by considering convective boundary conditions at the walls of 

channel. Micropolar fluid is flowing adjacent to the upper wall of the channel and 

fluid flowing between the non-Newtonain fluid layer and lower plate of channel is 

water based nanofluid. The transformed dimensionless coupled equations are 

solved numerically via shooting technique. The numerical results are plotted to 

analyze the effects of various emerging parameters. This study shows that an 

increase in magnetic parameter and Brinkman number causes an increase in 

entropy generation whereas entropy generation reduces with increase in 

micropolar parameter and nanoparticle volume fraction. 
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Introduction 

Two-phase flow situations occur in majority of problems concerned with geophysics, plasma 

physics, petroleum industry and magneto-fluid dynamics. Recent literature shows certain experimental as 

well as analytical investigations on different aspects of two-phase flow phenomena. Shail [1] analyzed the 

viscous fluid flow between a pair of horizontal insulating plates in which there was a layer of non-

conducting fluid bounded by the conducting fluid and upper wall of channel. Malashetty and Umavatti [2] 

studied the two-phase flow enclosed by an inclined channel with heat transfer where one-phase electrically 

conducting. Kumar et al. [3] investigated the two-fluid mixed laminar flow of conducting fluid in a vertical 

channel with magnetic field and heat transfer. In another study, Abbas et al. [4] observed velocity and 

thermal slip effects on two-phase viscous fluid in the presence of heat transfer through an inclined channel. 

Recently, Hasnain et al. [5] presented the numerical solution on the flow of viscous and non-Newtonian 

(third grade) fluids through porous medium within an inclined channel.  

The flow as well as heat transfer of the fluid by means of channels is of great significance because 

of their large range of applications in technology and engineering. These applications are established in the 
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areas like geothermal energy removal, microfluidic devices, oil excursion, extrusion of polymer fluids, 

surface sublimation and binary gas diffusion. There are a variety of fluids that happens to be essential from 

the industrial perspective whose characteristics are not successfully described by the Navier-Stokes 

equations and termed as non-Newtonian fluids. In literature, various models are proposed because of the 

intricacy of such kinds of fluids. However, the micropolar fluid model is regarded as notable. The concept 

of the micropolar fluid comes from the fluid flows consisting of rotating micro-elements. In micropolar 

fluids, coupling among spin of each particles along with macroscopic velocity field is considered. This 

concept is useful to describe the flow of liquefied crystal, polymeric liquids, colloidal fluids and animal 

blood. Initially, Eringen [6] introduced the concept of micropolar fluids and developed new material 

parameters, one extra independent vector field (the microrotation) and new constitutive equations which 

should be solved simultaneously with the classical equations for Newtonian fluid flow. In addition to 

micropolar theory sometimes called microstructure theory, Eringen [7] continued his investigation by 

considering heat conduction and heat dissipation effects. Fully developed flow of viscous and micropolar 

fluids in a channel was studied by Kumar et al. [8]. Sibanda and Awad [9] considered laminar flow of a 

micropolar fluid along a channel and found an analytical solution.  By using homotopy perturbation method 

(HPM), Sheikholeslami et al. [10] studied micropolar fluid flow through porous channel in the presence of 

heat transfer. Recently, Tetbirt et al. [11] did numerical analysis of convective heat transfer of micropolar 

and viscous fluid flow in vertical channel with constant magnetic field.  

The leading industrial developments of present century are affected by the nanotechnology, and 

consequently the researchers are attracted towards the study of nanofluids. Water, paraffin oil, ethylene 

glycol, kerosene and grease are some fluids which are poor conductors of heat. But thermal conductivity of 

such fluids has substantial impact on heat transfer phenomena. To raise the thermal conductivity of these 

fluids, Choi [12] proposed solid particles that are suspended in such type the fluid. The size of these 

particles is approximately 10-100 nm in diameter and because of their tiny size they are considerably stable 

as well as without additional challenges of pressure drop, sedimentation, erosion and non-Newtonian 

behavior. In another study, Choi [13] noticed that the fluid’s thermal conductivity increased nearly two 

times with the insertion of nanoparticles even though their volume is less than 1%. The heat transfer 

analysis of nanofluid flow through a channel with various assumptions has been carried out by several 

authors. [14-20].  

The recent development in the area of heat transfer is the investigation of entropy generation which 

goes back to Clausius and Kelvins who studied the irreversibility features of second law of 

thermodynamics. Though, the entropy generation as a consequence of temperature difference stayed 

neglected by classical thermodynamics. Second law of thermodynamics includes designs of thermal devices 

associated with the concept of entropy generation as well as its optimization. The factors which affect the 

generation of entropy are viscous effects, magnetic effects and heat transfer towards lower thermal gradient 

etc. The entropy generation is involved in various energy pertinent systems like cooling of advanced 

electrical systems, heat exchangers, geothermal energy system, solar power collectors, energy storage 

systems and pipe networks. Das and Jana [21] investigated the effects of magnetohydrodynamic flow of 

viscous fluid in a porous channel with entropy generation. Das et al. [22] discussed the entropy generation 

in MHD nanofluid flow in a vertical channel by considering three different types of nanoparticles. Ibáñez 

[23] examined the effects of convective boundary condition on entropy generation of electrically 

conducting viscous fluid in a channel along hydrodynamic slip. Chen et al. [24] analyzed the entropy 
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generation on flow of 2 3 2Al O H O  nanofluid through channel numerically. Falade et al. [25] considered 

the flow of couple stress fluid within a channel using entropy generation.  

The present study aims to investigate the entropy generation analysis on mixed convective two-

phase flow of an electrically conducting micropolar and nanofluid in an inclined channel. We also 

considered the convective boundary conditions at the thermal heated walls. In phase I of the channel, we 

considered micropolar fluid by taking a constant magnetic field, whereas phase II is filled with water-based 

Ag magnetic nanoparticles. Numerical solutions of the coupled ODE’s are constructed using shooting 

method with Runge-Kutta scheme. 

Formulation of the problem 

 

Consider laminar flow of two immiscible fluids enclosed in a channel expanding in x and z 
direction. A schematic illustration of an inclined channel having inclination   with the horizontal axis is 

shown in Fig. 1. The domain 10 y h  , named as phase I, comprises of an electrically conducting 

micropolar fluid and domain 2 0h y   , labelled as phase II, encloses an electrically conducting water 

based nanofluid. Both the fluids have densities ,i  viscosities ,i  electrical conductivities i , thermal 

diffusivities ,i  thermal conductivities i  and specific heat capacitance 
ipC   where 1i  is for micropolar 

fluid, i nf  is for nanofluid, i s  is for nanoparticles and 2i   is for base fluid. The spherical particles 

of silver (Ag) are used as nanoparticles with  as nanoparticle volume fraction. The fluid flow is confined 

to a transverse magnetic field of unvarying intensity 0.B  The fluid properties of each fluid are taken as 

constant and the fluid flow in channel occurs by uniform pressure gradient  / .p x   The temperature of 

channel plates is preserved at uniform temperature 
1wT and 

2wT  at 1y h  and 2 ,y h   respectively, with 

1 2
.w wT T  The fully developed flow of both fluids is steady and incompressible. Under these preliminary 

suppositions, the governing momentum and energy equations in the presence of magnetic field and ohmic 

dissipation, respectively, are presented as: 

 

 
Figure 1: Physical diagram of the study. 
For Phase I 
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where iu  and iT  are the velocities and temperatures of the fluids, respectively, flowing in the two phases of 

the channel, N  component of micro-rotation vector normal to the xy  plane,   spin gradient viscosity 

and  vortex viscosity, i  are the coefficients of thermal expansion and g  gravitational acceleration. 

For simplicity, we have neglected the viscous dissipation effects in the energy equations (3) and (5). 

The expressions for  , , , , ,nf nf nf nf p
nf

C      nf  and nf  are given as [17] 
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The thermophysical properties of water and nanoparticle are given in Table 1. 

Table 1: Thermophysical properties of water and nanoparticle. 

Liquid and nano particles  (kg/m
3
) 

pC (J/kg K)  (W/m K) 510  ( K
-1

)
 
 (S/m) 

Pure water 997.1 4179 0.613 21 5.5×10
-6

 
 

Silver (Ag) 10500 385 429 1.89 63×10
6
  

 

The following boundary and interface conditions on velocity with continuity of shear stresses at the 

interface are proposed as 
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and the following convective boundary and interface conditions on temperature with the continuity of heat 

fluxes at the interface are 

     
2
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where 
*

ih  are coefficients of convective heat transfer for each plate of the channel. 

It is further supposed that 
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where j  is micro-inertia density and 1/K    is the micropolar fluid material parameter. By taking 

0,K   the case of Newtonian fluid can be achieved. 

Using the following nondimensional variables and parameters 
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Here Gr,Br, Re, ,M P  are the Grashof number, Brinkman number, Reynolds number, Hartmann number 

and nondimensional pressure gradient, respectively, 1u   is the average velocity.  

The flow equations, after utilizing the above nondimensional quantities become 

Phase I 

   
2

21
1 12

Gr
1 sin ,

Re

d u dN
K K M u P

dydy
          (11) 

   

2
1

2

2 1
2 0,

2

dud N K
N

K dydy 

 
   

  
     (12) 

   
2

2 21
12

Br 0.
d

M u
dy


         (13) 

Phase II 

 

 
 

   
 

2
2.522

22
2 2

2.5 2.52 2 2
2

Gr
sin 1 1 1

Re

3 1
1 1 1 ,

2 1

s sd u
bmnh

dy

msh M u mh P

 
      

 

 
 

  

  
       

  

 
         

   (14) 

  
 

   

2
2 2 22

22
2

3 1
Br 1 0.

2 1

n f d
M kh s u

dy

  

   

 
       

    (15) 

The velocity, temperature conditions (7) and (8) in nondimensional form are  
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and 
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where * *
1 1 1 1 2 2 2 2Bi / and Bi /h h h h    are Biot numbers for upper and lower plates, respectively. 

Usually the Biot number is taken same for both plates. 

 

Entropy Generation 

Entropy generation occurs due to non-equilibrium conditions which appear by virtue of energy exchange, 

magnetic field as well as momentum within the fluid and at the walls of the channel. In the absence of 

viscous dissipation, heat transfer and magnetic effects are the components of entropy generation. The 

volumetric rate of entropy generation for incompressible micropolar fluid is given as  
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and the volumetric rate of entropy generation for incompressible nanofluid is given as 
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The dimensionless form of Eqs. (18) and (19) are expressed as 
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where iNs  is the dimensionless entropy generation number and 
2

/p wT T T   is the dimensionless 

temperature difference. 

Combining Eqs. (20) and (21) give the overall entropy generation number Ns  throughout the channel and 

is expressed as  
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The first two terms on R.H.S. of Eq. (23) represent entropy generation caused by heat transfer and the last 

two terms express the entropy generation due to magnetic field. 

With a purpose to analyze the dominance of heat transfer irreversibility on irreversibility due to magnetic 

field and vice versa, Bejan number Be  is defined as [22] 

 
entropy generation due to the heat transfer

entropy generation num
Be .

ber
  

The heat transfer irreversibility dominates when Be 0.5 and magnetic field irreversibility is dominant 

when Be 0.5.  
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Results and discussion 

Numerical solution of Eqs. (11)-(15) subject to the boundary conditions (16) and (17) is obtained 

using shooting method to exhibit the physical understanding of the flow problem under the influence of 

various flow parameters. The algorithm of the numerical scheme is given in Fig.2.Figs. 3-6 demonstrate the 

impact of six parameters on the linear fluid velocity, angular fluid velocity and temperature of fluid, the 

parameters are: micropolar parameter ,K  magnetic parameter ,M  ratio of heights ,h  ratio of electrical 

conductivities ,s nanoparticle volume fraction  and Biot numbers 1 2Bi ,Bi .  Figs. 7-10 and tables 2-3 are 

presented to show the influence of micropolar parameter ,K  magnetic parameter ,M  nanoparticle volume 

fraction ,  inclination angle , dimensionless pressure gradient P  and Brinkman number Br  on entropy 

generation and Bejan number. 

 Fig. 3 shows the influence of micropolar parameter K  and magnetic parameter M  on linear fluid 

velocity  u y , microrotation/angular fluid  velocity  N y  as well as fluid temperature  y  keeping 

other parameters fixed. Fig. 3 (a) shows the effects on linear fluid velocity  u y  due to change in 

micropolar parameter K  with two values of magnetic parameter .M  The increase in micropolar parameter 

K  as well as magnetic parameter M  causes decrement in linear fluid velocity  u y  in the channel. But 

this decrease in the velocity of fluid in phase I is more prominent instead of phase II, since it contains 

micropolar fluid. On the other side, the decrease in fluid velocity with the increasing value of magnetic 

parameter M is because of the retarding force, named as Lorentz force, which increases with an increase in 

magnetic parameter. Since both the fluids are electrically conducting so fluid velocity throughout the 

channel is decreased with an increment in the magnetic parameter but when micropolar parameter is 

increased a significant change is observed in velocity of the fluid in the phase I whereas change in the fluid 

velocity in phase II is the result of continuity.  The curves plotted in Fig. 3(b) show the change in the 

microroation velocity  N y  with increase in micropolar parameter and magnetic parameter. The 

magnitude of microrotation velocity  N y  increases with a hike in micropolar parameter whereas an 

inflation in magnetic parameter, as expected, causes a decline in the microrotation velocity. The variation in 

fluid temperature  y  with the rise in both micropolar parameter and magnetic parameter can be seen in 

Fig. 3(c). From this Fig., it can be observed that an increase in magnetic parameter provokes an increase in 

temperature of fluid  y  whereas reverse behavior is observed with an increase in micropolar parameter. 

 Fig. 4 displays the change in linear velocity of fluid, angular fluid velocity and fluid temperature 

for several values of ratio of heights h  as well as ratio of electric conductivities s  of fluids. Fig. 4(a) 

shows the influence of ratio of heights and ratio of electric conductivities on linear fluid velocity  .u y  

One can observe from the Fig. that fluid velocity increases with an increase in height of upper phase 

relative to the lower phase. It can also be observed that flow field is much larger in the upper phase of 

channel as compared to lower phase but this difference is decreased with an increase ratio of heights. The 

decreasing behavior of linear velocity with an increase in ratio of electric conductivities is also noticed in 

this Fig. The variation in angular fluid velocity  N y  is exhibited in Fig. 4(b). It can be seen clearly from 

the Fig. that the angular velocity  N y is decreased as the ratio of heights h increases, whereas it is 

increased by the increasing values of s . The effect of ratio of heights h  and ratio of electric conductivities 

s  on fluid temperature  y  is shown Fig. 4(c). This Fig. depicts that as both ratio of heights and ratio of 

electric conductivities increases, an increase in temperature of fluid  y  is witnessed. Also, the 

temperature field in the lower phase is smaller when compared to the upper phase of the channel. The 
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effects of change in ratio of electrical conductivities on temperature field is much prominent at greater 

values of ratio of heights. 

 The impact of nanoparticle volume fraction   on the fluid velocity  u y  and fluid temperature 

 y  is plotted in Fig. 5. An increase in nanoparticle volume fraction   results in the decrement of both 

fluid velocity  u y  and temperature of fluid  y  as can be noticed in Fig. 5(a) and Fig. 5(b), 

respectively. From both Figs., it is also noticed that if non-Newtonian fluid (micropolar fluid) in the upper 

phase of channel is swapped by a Newtonain fluid (viscous fluid), the influence of nanoparticle volume 

fraction   continues to be same. Yet the magnitude of velocity and temperature profiles for viscous-nano 

fluids system is larger rather than micropolar-nano fluids system. The curves plotted in Fig. 6 show the 

effect of Biot numbers 1 2Bi ,Bi on temperature of fluid  y  by considering both Newtonian  0K   

and non-Newtonian fluids  0.2 .K    The limit 
1 2Bi 0 and Bi 0   means that both the walls of 

channel are thermally isolated and no heat transfer occurs whereas 1 2Bi and Bi   correlate to the 

situation when each ambient temperature and that of fluid at the wall are equal. Furthermore, the heat flow 

from the walls of channel to ambient temperature increases as Biot number increases which leads to the 

decrement in temperature of fluid.  

 Fig. 7 is displayed to present the effects of micropolar parameter K  on the entropy generation 

number Ns and Bejan number Be.  From the Fig. it is clear that both entropy generation number and Bejan 

number decrease with the increasing values of microploar parameter. An increase in entropy generation 

number Ns  and decrease in Bejan number Be  is observed with hike in magnetic parameter .M  Fig. 8 

demonstrates this phenomena, whereas the variation in entropy generation within the channel for 

micropolar fluid is lesser than nanofluid (see Fig. 8(a)). Fig. 9 elucidates the changing behavior of entropy 

generation number Ns and Bejan number Be  as nanoparticle volume fraction   varies. The decreasing 

nature of entropy generation number and increasing behavior of Bejan number is seen in this Fig. The 

variation in entropy generation number Ns  and Bejan number Be  with the increasing values of Brinkman 

number Br  is depicted in Fig. 10. This Fig. reveals that with the increase of Brinkman number the rate of 

entropy generation increases, conversely, the decrement in Bejan number is noted. Physically, Brinkman 

number represents heat generation source therefore in the layers of moving fluid, heat is generated. Hence 

entropy generation is increased in the channel due to this heat generation along with heat transfer at the 

walls. 

 Tables 2 presents the change in fluid velocity as well as fluid temperature with in the channel with 

an increase in the inclination of the channel. It can be noticed from the table that an increase in the 

inclination angle leads to decrease velocity along with the temperature of the fluid. The effect of 

dimensionless pressure gradient on velocity and temperature profiles is presented in table 3. One can 

observe that a hike in both fluid velocity and temperature is produced with the increasing values of .P  The 

tables also show that the flow field for the micropolar fluid in larger than that of nanofluid. 
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Fig. 2:  Flowchart of the numerical method. 

  

(a) (b) 

 

(c) 

Fig. 3: (a) Velocity distribution (b) microrotation velocity distribution (c) temperature distribution 

for several values of micropolar parameter K  and magnetic parameter .M  
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(a) (b) 

 

(c) 

Fig. 4: (a) Velocity distribution (b) microrotation velocity distribution (c) temperature distribution 

for several values of ratio of heights h  and ratio of electrical conductivities .s  

  

(a) (b) 

Fig. 5: (a) Velocity distribution (b) temperature distribution for several values of nanoparticle 

volume fraction   and micropolar parameter .K  
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Fig. 6: Temperature distribution for several values of Biot number 
1 2Bi ,Bi  and micropolar parameter 

.K  

  

(a) (b) 

Fig. 7: (a) Entropy generation (b) Bejan number for several values of micropolar parameter .K  

 

  

(a) (b) 

Fig. 8: (a) Entropy generation (b) Bejan number for several values of magnetic parameter .M  
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(a) (b) 

Fig. 9: (a) Entropy generation (b) Bejan number for several values of nanoparticle volume fraction 

.  

  

(a) (b) 

Fig. 10: (a) Entropy generation (b) Bejan number for several values of Brinkman number Br.  

Table 1: Velocity and temperature for different values of inclination of channel.  

 0   / 6   / 4   

y  u    u    u    

1.00 0.00000 0.034950 0.00000 0.034240 0.00000 0.033957 

0.80 0.460880 0.038431 0.446171 0.037650 0.440873 0.037339 

0.60 0.789350 0.041751 0.762141 0.040902 0.752345 0.040563 

0.40 0.979162 0.044640 0.942088 0.043729 0.928744 0.043365 

0.20 1.028090 0.046869 0.984064 0.045905 0.968223 0.045520 

0.00 0.937058 0.048359 0.889119 0.047357 0.871878 0.046956 

-0.20 0.850399 0.048401 0.803393 0.047393 0.786490 0.046990 

-0.40 0.714974 0.047378 0.673291 0.046388 0.658305 0.045993 

-0.60 0.529426 0.045598 0.497406 0.044644 0.485895 0.044263 

-0.80 0.291895 0.043398 0.273796 0.04248 0.267290 0.042126 

-1.00 0.000000 0.041057 0.00000 0.040197 0.00000 0.039854 
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Table 3: Velocity and temperature for different values of dimensionless pressure gradient. 

 2P   4P   6P   
y  u    u    u    

1.00 0.00000 0.005545 0.00000 0.022002 0.00000 0.049108 

0.80 0.181851 0.006098 0.359103 0.024194 0.532275 0.053999 

0.60 0.311113 0.006625 0.613720 0.026284 0.908782 0.058663 

0.40 0.385359 0.007083 0.759129 0.028101 1.122620 0.062715 

0.20 0.403748 0.007436 0.793733 0.029500 1.171520 0.065835 

0.00 0.366668 0.007672 0.718351 0.030434 1.056760 0.067914 

-0.20 0.332162 0.007678 0.649631 0.030457 0.954084 0.067964 

-0.40 0.278897 0.007516 0.544766 0.029812 0.799094 0.066523 

-0.60 0.206322 0.007233 0.402636 0.028627 0.590085 0.064021 

-0.80 0.113678 0.006884 0.221700 0.027306 0.324711 0.060930 

-1.00 0.000000 0.006513 0.00000 0.025834 0.00000 0.057644 

 

Concluding Remarks 
 

In this study, an entropy generation analysis is performed due to mixed convection and magnetic field in an 

inclined channel for the flow of two non-miscible fluids with convective boundary conditions. The two 

fluids taken in the study are non-Newtonian (micropolar) fluid and Newtonian base-nanofluid. The 

numerical solutions of the transformed ordinary differential equations are found by shooting technique. The 

outcomes of the study can be sum up as follows: 

 The linear velocity of fluid  u y  leads to decline with hike in ,K  ,M  s  and   whereas increase in 

h of channel increases the fluid velocity. 

 Magnitude of microrotation fluid velocity  N y  increases by increasing the values of ,K h  while 

opposite trend is noticed with increase in M  and .s  

 Decrease in fluid temperature  y  with in the channel is examined with rise in K  and   and Biot 

numbers 1 2Bi , Bi  however increase in ,M  h  and s  enhances the fluid temperature.  

 Increase in entropy generation occurs due to increase in M and Br but escalating values of K  and   

decrease the entropy generation. 

 Bejan number decreases with an increase in   while contrary behavior is noted for , and .Br K M  

Nomenclature 

0B  - magnetic field,  [T]    

b
 

- ratio of coefficient of thermal 

expansion of phases, 2 1[ ], [ ]    
iu
 

- velocity of phases x -direction, 
1[ ]ms  

iBi
 

 Biot number, 
*[= / ]i i ih h   iu

 
- dimensionless velocities of phases, 

1[ ]ms  

Be - Bejan number, [ ]  1u  - average velocity, 
1[ ]ms  

Br
 - Brinkman number, 

2

1 1 1[= / ]u T  
 

, ,x y z  - spatial coordinates, [ ]m  
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pC
 

- specific heat at constant pressure, 
-1 -1[Jkg K ] 

iy

 
- dimensionless variables 

Gr

  

- Grashof number,

 
1 2

3 2

1 1 1[ g / ]w wh T T    

                      Greeks letters 

            

g  - acceleration due to gravity, 
-2[LT ]  i  - thermal diffusivities of the phases,  

2 1[ ]m s  

ih  
- heights of the phases, [L]  

i  
- coefficient of thermal expansion, 

1[ ]K 
 

h  - ratio of heights of phases, 
2 1[ / ]h h

[ ]  


 - spin gradient viscosity 

i  - thermal conductivity of fluids of 

phases, 
-1 -1[Wm K ]  

i  - dynamic viscosities of the phases, 

[ ]  

k  - ratio of coefficient of thermal 

conductivity of fluids of phases, 

1 2[ / ]K K [ ]  

i  - kinematic viscosities of the phases, 
2 1[ ]m s  

K  -Micropolar parameter, [ 1/  ]     - vortex viscosity 

*k  
- mean absorption coefficient 

i  
- fluid densities of the phases,

3[ ]kgm
 

M  - Hartman number,[ 0 2 2/B h   ]   i  
- dimensionless temperatures of the 

phases, [    
2 1 2

/w w wT T T T  ] [ ]  

m  - ratio of coefficient of dynamic    

  viscosity of phases, [
1 2/  ] [ ]  

  
 - angle of the channel with horizontal, 

[ ]rad  

n  - ratio of densities of fluids of phases

2 1[ ], [ ]     
i  -  electrical conductivities of fluid, 

-1[sm ]  

N  - micro-rotation vector, [ ]    

P  - nondimensional pressure gradient, [ ]    - nanofluid volume fraction [ ]  

Pr  - Prandtl number, [ 1 1/pC K ] [ ]    

Re  - Reynolds number, [ ]                          Subscripts 

 

Rd  - radiation parameter [
2 1/R R ] [ ]  w  - surface conditions 

s  - ratio of electrical conductivities of 

fluids of phases 2 1[ ], [ ]    

i  - for phase I  1,i   

iT  - temperature of the fluid of phases, 

[K]  

 - for phase II 2,i   

- for nanofluid ,i nf  

iwT  - temperature at the surfaces of the 

plates of the phases,  
 - for nanoparticles  i s   
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