GENERAL FRACTIONAL-ORDER ANOMALOUS DIFFUSION WITH NON-SINGULAR POWER-LAW KERNEL

by

Xiao-Jun YANGa,b*, Hari Mohan SRIVASTAVAc,d, Delfim F. M. TORRESe, and Amar DEBBOUCHEe,f

a State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, China
b School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China
c Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
d China Medical University, Taichung, Taiwan, China
e Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, Aveiro, Portugal
f Department of Mathematics, Guelma University, Guelma, Algeria

Original scientific paper
https://doi.org/10.2298/TSCI170610193Y

In this paper, we investigate general fractional derivatives with a non-singular power-law kernel. The anomalous diffusion models with non-singular power-law kernel are discussed in detail. The results are efficient for modelling the anomalous behaviors within the frameworks of the Riemann-Liouville and Liouville-Caputo general fractional derivatives.

Key words: general fractional derivative with non-singular power-law kernel, Riemann-Liouville general fractional derivative, anomalous diffusion, Liouville-Caputo general fractional derivative

Introduction

The Riemann-Liouville and Liouville-Caputo fractional derivatives (FD) are known to have important roles in engineering applications, such as (for example) in heat transfer, viscoelasticity, and others, see [1-4] and the references cited therein. The theory of the Riemann-Liouville and Liouville-Caputo FD is used to model the anomalous diffusion behaviors. For example, the anomalous diffusion in the rotating flow was observed in [5]. The anomalous diffusion involving the stochastic pathway was discussed in [6]. The anomalous diffusion in the disordered (complex) media was reported in [7]. The anomalous diffusion with the external forces was presented in [8]. The anomalous diffusion related to the thermal equilibrium was considered in [9]. The anomalous diffusion in the sub diffusive case was proposed in [10].

Recently, the Riemann-Liouville and Liouville-Caputo general fractional derivatives (GFD) with non-singular Mittag-Leffler function kernels were introduced in [11] and their applications in the rheological models were discussed in [12]. More recently, the Riemann-Liouville and Liouville-Caputo GFD with non-singular power-law kernel were presented in [13].
The Liouville-Weyl and Liouville-Caputo GFD with non-singular power-law kernel were proposed to model the anomalous diffusion problems in [14].

In the spirit of the previous ideas, the chief aim of this paper is to model general fractional anomalous diffusion problems with non-singular power-law kernel.

Preliminary

Let \(\mathbb{R}, \mathbb{R}_+, \mathbb{R}_-, \) and \(\mathbb{N} \) be the sets of the real numbers, positive real numbers, negative real numbers, and positive integer numbers, respectively.

In order to introduce the derivations of the Riemann-Liouville and Liouville-Caputo GFD with non-singular power-law kernel, we start with the \(n \)-fold integral in the form, see [1]:

\[
\int_0^n \int_0^n \cdots \int_0^n \Theta(t) \, dt = \frac{1}{\Gamma(1+n)} \int_0^n (x-t)^n \Theta(t) \, dt
\]

(1)

where \(n \in \mathbb{N}, x \in \mathbb{R}, \) and \(\Theta(t) \) is a real function.

From eq. (1) we have, see [1, 4]:

\[
\int_0^n \int_0^n \cdots \int_0^n \Theta(t) \, dt = \int_0^n \Lambda(x-t) \Theta(t) \, dt
\]

(2)

where the kernel is represented in the form, see [1, 4]:

\[
\Lambda(x-t) = \frac{(x-t)^n}{\Gamma(1+n)}
\]

(3)

Replacing \(n \) by \(\alpha \) in eq. (2), where \(\alpha \in \mathbb{R} \), we obtain:

\[
\Phi(x) = \int_0^n \frac{(x-t)^{\alpha}}{\Gamma(1+\alpha)} \Theta(t) \, dt
\]

(4)

When \(\alpha = -\beta \in \mathbb{R}_- \), from eq. (4) we obtain the generalized Abel integral equation in the form [1]:

\[
\Phi(x) = \frac{1}{\Gamma(1-\beta)} \int_0^n \frac{\Theta(t)}{(x-t)^\beta} \, dt
\]

(5)

The left-handed Riemann-Liouville FD of the function \(\Theta(t) \) of order \(\beta \) is defined as, see [1-4]:

\[
\mathcal{D}^{(\beta)}_{a} \Theta(x) = \frac{1}{\Gamma(1-\beta)} \frac{d}{dx} \int_a^x \frac{\Theta(t)}{(x-t)^\beta} \, dt
\]

(6)

where \(a, \beta \in \mathbb{R} \) and \(0 < \beta < 1 \).

The right-handed Riemann-Liouville FD of the function \(\Theta(t) \) of order \(\beta \) is defined as, see [1-4]:

\[
\mathcal{D}^{(\beta)}_{b} \Theta(x) = \frac{1}{\Gamma(1-\beta)} \frac{d}{dx} \int_x^b \frac{\Theta(t)}{(t-x)^\beta} \, dt
\]

(7)
where $b, \beta \in \mathbb{R}$ and $0 < \beta < 1$.

The left-handed Riemann-Liouville FD of the function $\Theta(t)$ of order β is defined as, see [4]:

$$\mathcal{RL}_a^\beta \frac{d}{dx} \Theta(x) = \frac{1}{\Gamma(m - \beta)} \left(\frac{d}{dx} \right)^m \left(\frac{\Theta(t)}{x} \right)^{\beta - m + 1} dt$$ \hspace{1cm} (8)

where $a, \beta \in \mathbb{R}$ and $m - 1 < \beta < m$.

The right-handed Riemann-Liouville FD of the function $\Theta(t)$ of order β is defined as, see [4]:

$$\mathcal{RL}_b^\beta \frac{d}{dx} \Theta(x) = \frac{1}{\Gamma(m - \beta)} \left(\frac{d}{dx} \right)^m \left(\frac{\Theta(t)}{x - x} \right)^{\beta - m + 1} dt$$ \hspace{1cm} (9)

where $b, \beta \in \mathbb{R}$ and $m - 1 < \beta < m$.

The left-handed Liouville-Caputo FD of the function $\Theta(t)$ of order β is defined as, see [2-4]:

$$\mathcal{LC}_a^\beta \frac{d}{dx} \Theta(x) = \frac{1}{\Gamma(1 - \beta)} \left(\frac{d}{dx} \right)^m \left(\frac{\Theta(t)}{x} \right)^{\beta - m + 1} dr$$ \hspace{1cm} (10)

where $a, \beta \in \mathbb{R}$ and $0 < \beta < 1$.

The right-handed Liouville-Caputo FD of the function $\Theta(t)$ of order β is defined as, see [2-4]:

$$\mathcal{LC}_b^\beta \frac{d}{dx} \Theta(x) = \frac{1}{\Gamma(1 - \beta)} \left(\frac{d}{dx} \right)^m \left(\frac{\Theta(t)}{x - x} \right)^{\beta - m + 1} dr$$ \hspace{1cm} (11)

where $b, \beta \in \mathbb{R}$ and $0 < \beta < 1$.

The left-handed Liouville-Caputo FD of the function $\Theta(t)$ of order β is defined as, see [2-4]:

$$\mathcal{LC}_a^\beta \frac{d}{dx} \Theta(x) = \frac{1}{\Gamma(m - \beta)} \left(\frac{d}{dx} \right)^m \left(\frac{\Theta(t)}{x} \right)^{\beta - m + 1} dr$$ \hspace{1cm} (12)

where $a, \beta \in \mathbb{R}$ and $m - 1 < \beta < m$.

The right-handed Liouville-Caputo FD of the function $\Theta(t)$ of order β is defined as, see [2-4]:

$$\mathcal{LC}_b^\beta \frac{d}{dx} \Theta(x) = \frac{1}{\Gamma(m - \beta)} \left(\frac{d}{dx} \right)^m \left(\frac{\Theta(t)}{x - x} \right)^{\beta - m + 1} dr$$ \hspace{1cm} (13)

where $b, \beta \in \mathbb{R}$ and $m - 1 < \beta < m$.

For $0 < \beta < 1$, one has [1, 4]:

$$\mathcal{RL}_a^\beta \frac{d}{dx} \Theta(x) = \frac{1}{\Gamma(1 - \beta)} \left(\frac{\Theta(a)}{x - a} \right)^{\beta - 1} + \mathcal{LC}_a^\beta \frac{d}{dx} \Theta(x)$$ \hspace{1cm} (14)
\[R_{\alpha} L_{\beta}^{(\rho)} \Theta(x) = \frac{1}{\Gamma(1-\beta)} \frac{\Theta(b)}{(b-x)^\beta} - L_{\alpha} C_{\beta}^{(\rho)} \Theta(x) \]

(15)

Remark 1. For more details of the Riemann-Liouville and Liouville-Caputo FD, readers refer to see [1-10].

General fractional-order derivatives

When \(\alpha = -\beta \in \mathbb{R}_+ \), from eq. (4) we obtain:

\[\Phi(x) = \frac{1}{\Gamma(1+\beta)} \int_0^x (x-t)^\beta \Theta(t) \, dt \]

(16)

The left-handed Riemann-Liouville GFD of the function \(\Theta(t) \) of order \(\beta \) is defined as [13]:

\[R_{\alpha} L_{\beta}^{(\rho)} \Theta(x) = \frac{1}{\Gamma(1+\beta)} \frac{d}{dx} \int_a^x (x-t)^\beta \Theta(t) \, dt \]

(17)

where \(a, \beta \in \mathbb{R} \) and \(0 < \beta < 1 \).

The right-handed Riemann-Liouville GFD of the function \(\Theta(t) \) of order \(\beta \) is defined:

\[R_{\alpha} L_{\beta}^{(\rho)} \Theta(x) = \frac{1}{\Gamma(1+\beta)} \frac{d}{dx} \int_a^b (t-x)^\beta \Theta(t) \, dt \]

(18)

where \(b, \beta \in \mathbb{R} \) and \(0 < \beta < 1 \).

The left-handed Riemann-Liouville GFD of the function \(\Theta(t) \) of order \(\beta \) is defined as [13]:

\[R_{\alpha} L_{\beta}^{(\rho)} \Theta(x) = \frac{1}{\Gamma(m+\beta)} \left(\frac{d}{dx} \right)^{m+\beta} \int_a^x (x-t)^{\beta+m-1} \Theta(t) \, dt \]

(19)

where \(a, \beta \in \mathbb{R} \) and \(m-1 < \beta < m \).

The right-handed Riemann-Liouville GFD of the function \(\Theta(t) \) of order \(\beta \) is defined:

\[R_{\alpha} L_{\beta}^{(\rho)} \Theta(x) = \frac{1}{\Gamma(m+\beta)} \left(\frac{d}{dx} \right)^{m+\beta} \int_a^b (t-x)^{\beta+m-1} \Theta(t) \, dt \]

(20)

where \(b, \beta \in \mathbb{R} \) and \(m-1 < \beta < m \).

The left-handed Liouville-Caputo GFD of the function \(\Theta(t) \) of order \(\beta \) is defined as, see [13]:

\[L_{\alpha} C_{\beta}^{(\rho)} \Theta(x) = \frac{1}{\Gamma(1+\beta)} \frac{d}{dx} \int_a^x (x-t)^\beta \frac{d\Theta(t)}{dx} \, dt \]

(21)

where \(a, \beta \in \mathbb{R} \) and \(0 < \beta < 1 \).

The right-handed Liouville-Caputo GFD of the function \(\Theta(t) \) of order \(\beta \) is defined:

\[L_{\alpha} C_{\beta}^{(\rho)} \Theta(x) = \frac{1}{\Gamma(1+\beta)} \frac{d}{dx} \int_a^b (t-x)^\beta \frac{d\Theta(t)}{dx} \, dt \]

(22)

where \(b, \beta \in \mathbb{R} \) and \(0 < \beta < 1 \).
The left-handed Liouville-Caputo GFD of the function \(\Theta(t) \) of order \(\beta \) is defined as,

\[
\text{GLC}_a^\beta \Theta(x) = \frac{1}{\Gamma(m+\beta)} \int_a^x (x-t)^{\beta-m-1} \frac{d^m \Theta(t)}{dx^m} dt
\]

where \(a, \beta \in \mathbb{R} \) and \(m-1 < \beta < m \).

The right-handed Liouville-Caputo GFD of the function \(\Theta(t) \) of order \(\beta \) is defined as:

\[
\text{GLC}_b^\beta \Theta(x) = \frac{1}{\Gamma(m+\beta)} \int_x^b (t-x)^{\beta-m-1} \frac{d^m \Theta(t)}{dx^m} dt
\]

where \(b, \beta \in \mathbb{R} \) and \(m-1 < \beta < m \).

For \(0 < \beta < 1 \), we obtain:

\[
\text{GLC}_a^\beta \Theta(x) = \frac{(x-a)^\beta \Theta(a)}{\Gamma(1-\beta)} + \text{GLC}_b^\beta \Theta(x)
\]

\[
\text{GLC}_b^\beta \Theta(x) = \frac{(b-x)^\beta \Theta(b)}{\Gamma(1-\beta)} - \text{GLC}_b^\beta \Theta(x)
\]

Remark 2. For more details of the definitions of the left-handed Riemann-Liouville and Liouville-Caputo GFD with non-singular power-law and Mittag-Leffler-function kernels, readers refer to [11-18].

The Laplace transforms of eqs. (18) and (21) are as follows [13]:

\[
L\left[\left(\text{GLC}_a^\beta \Theta \right)(x) \right] = \frac{1}{s^\beta} \Theta(s)
\]

\[
L\left[\left(\text{GLC}_0^\beta \Theta \right)(x) \right] = \frac{1}{s^\beta} \left[s\Theta(s) - \Theta(0) \right]
\]

where the Laplace transform is defined by [1, 4]:

\[
L\left[\Phi (x) \right] = \Phi(s) = \int_0^\infty e^{-sx} \Phi(x) dx
\]

Remark 3. For more details of the definitions of the left-handed Riemann-Liouville and Liouville-Caputo FD and GFD, readers refer to [1-22].

New results

Let us consider the following expressions of the GFD with non-singular power-law kernel:

\[
\text{GLC}_a^\beta \Theta(x) = \frac{1}{\Gamma(1+i\beta)} \frac{d}{dx} \int_a^x (x-t)^i \Theta(t) dt
\]

\[
\text{GLC}_b^\beta \Theta(x) = \frac{1}{\Gamma(1+i\beta)} \frac{d}{dx} \int_x^b (t-x)^i \Theta(t) dt
\]
\[
\frac{\text{GLC}}{x}D_{\alpha}^{(\beta)} \Theta(x) = \frac{1}{\Gamma(1+i\beta)} \int_{a}^{b} (x-t)^{i\beta} \frac{d\Theta(t)}{dx} dt
\]
(32)

\[
\frac{\text{GLC}}{x}D_{\beta}^{(\beta)} \Theta(x) = \frac{1}{\Gamma(1+i\beta)} \int_{a}^{b} (t-x)^{i\beta} \frac{d\Theta(t)}{dx} dt
\]
(33)

For 0 < \beta < 1, we have the following GFD with non-singular power-law kernel:

\[
\frac{\text{GLC}}{x}D_{\alpha}^{(\beta)} \Theta(x) = \frac{d}{dx} \int_{a}^{b} \sum_{i=0}^{\infty} \frac{1}{\Gamma(1+i\beta)} (x-t)^{i\beta} \Theta(t) dr = \frac{d}{dx} \int_{a}^{b} E_{\beta}[(x-t)^{\beta}] \Theta(t) dr
\]
(34)

\[
\frac{\text{GLC}}{x}D_{\beta}^{(\beta)} \Theta(x) = \frac{d}{dx} \int_{a}^{b} \sum_{i=0}^{\infty} \frac{1}{\Gamma(1+i\beta)} (t-x)^{i\beta} \Theta(t) dr = \frac{d}{dx} \int_{a}^{b} E_{\beta}[(t-x)^{\beta}] \Theta(t) dr
\]
(35)

\[
\frac{\text{GLC}}{x}D_{\alpha}^{(\beta)} \Theta(x) = \frac{d}{dx} \int_{a}^{b} \sum_{i=0}^{\infty} (-1)^{i} \frac{1}{\Gamma(1+i\beta)} (t-x)^{i\beta} \Theta(t) dr = \frac{d}{dx} \int_{a}^{b} E_{\beta}[-(t-x)^{\beta}] \Theta(t) dr
\]
(36)

\[
\frac{\text{GLC}}{x}D_{\beta}^{(\beta)} \Theta(x) = \frac{d}{dx} \int_{a}^{b} \sum_{i=0}^{\infty} (-1)^{i} \frac{1}{\Gamma(1+i\beta)} (t-x)^{i\beta} \Theta(t) dr = \frac{d}{dx} \int_{a}^{b} E_{\beta}[-(t-x)^{\beta}] \Theta(t) dr
\]
(37)

\[
\frac{\text{GLC}}{x}D_{\alpha}^{(\beta)} \Theta(x) = \frac{d}{dx} \int_{a}^{b} \sum_{i=0}^{\infty} \frac{1}{\Gamma(1+i\beta)} (x-t)^{i\beta} \frac{d\Theta(t)}{dr} dr = \frac{d}{dx} \int_{a}^{b} E_{\beta}[(x-t)^{\beta}] \frac{d\Theta(t)}{dr} dr
\]
(38)

\[
\frac{\text{GLC}}{x}D_{\beta}^{(\beta)} \Theta(x) = \frac{d}{dx} \int_{a}^{b} \sum_{i=0}^{\infty} (-1)^{i} \frac{1}{\Gamma(1+i\beta)} (t-x)^{i\beta} \frac{d\Theta(t)}{dr} dr = \frac{d}{dx} \int_{a}^{b} E_{\beta}[-(t-x)^{\beta}] \frac{d\Theta(t)}{dr} dr
\]
(39)

\[
\frac{\text{GLC}}{x}D_{\alpha}^{(\beta)} \Theta(x) = \frac{d}{dx} \int_{a}^{b} \sum_{i=0}^{\infty} \frac{1}{\Gamma(1+i\beta)} (t-x)^{i\beta} \frac{d\Theta(t)}{dr} dr = \frac{d}{dx} \int_{a}^{b} E_{\beta}[(t-x)^{\beta}] \frac{d\Theta(t)}{dr} dr
\]
(40)

\[
\frac{\text{GLC}}{x}D_{\beta}^{(\beta)} \Theta(x) = \frac{d}{dx} \int_{a}^{b} \sum_{i=0}^{\infty} (-1)^{i} \frac{1}{\Gamma(1+i\beta)} (t-x)^{i\beta} \frac{d\Theta(t)}{dr} dr = \frac{d}{dx} \int_{a}^{b} E_{\beta}[-(t-x)^{\beta}] \frac{d\Theta(t)}{dr} dr
\]
(41)

where the Mittag-Leffler function is defined as in [1]:

\[
E_{\beta}[(x-t)^{\beta}] = \sum_{i=0}^{\infty} \frac{(x-t)^{i\beta}}{\Gamma(1+i\beta)}
\]

In a similar way, from eqs. (17), (18), (21), and (22) we find for 0 < \beta < 1 that:

\[
\frac{\text{GLC}}{x}D_{\alpha}^{(\beta)} \Theta(x) = \frac{d}{dx} \int_{a}^{b} \sum_{i=0}^{\infty} \frac{1}{\Gamma(1-i\beta)} \frac{1}{(x-t)^{i\beta}} \Theta(t) dr = \frac{d}{dx} \int_{a}^{b} E_{\beta}[(x-t)^{\beta}] \Theta(t) dr
\]
(42)

\[
\frac{\text{GLC}}{x}D_{\beta}^{(\beta)} \Theta(x) = \frac{d}{dx} \int_{a}^{b} \sum_{i=0}^{\infty} (-1)^{i} \frac{1}{\Gamma(1-i\beta)} (x-t)^{i\beta} \Theta(t) dr = \frac{d}{dx} \int_{a}^{b} E_{\beta}[-(x-t)^{\beta}] \Theta(t) dr
\]
(43)
Modelling the general fractional anomalous diffusion with non-singular power-law kernel

We now consider the Riemann-Liouville general fractional time anomalous diffusion with non-singular power-law kernel:

\[
GRL_{\alpha, \beta}^{(\beta)} \Theta(x, \tau) = \frac{1}{\Gamma(1 + \beta)} \frac{d}{d\tau} \left[\int_{0}^{\tau} (\tau - \tau')^{\beta} \Theta(x, \tau') d\tau' \right] \]

subject to the initial condition

\[
\Theta(x, 0) = g(x) \]

where \(\kappa \) is the diffusion coefficient and the Riemann-Liouville general fractional partial derivative of the function \(\Theta(x, \tau) \) of order \(\beta \) with respect to the time variable, \(\tau \), is defined by:

\[
GRL_{\alpha, \beta}^{(\beta)} \Theta(x, \tau) = \frac{1}{\Gamma(1 + \beta)} \frac{d}{d\tau} \left[\int_{0}^{\tau} (\tau - \tau')^{\beta} \Theta(x, \tau') d\tau' \right] \]

Let us consider the Liouville-Caputo general fractional time anomalous diffusion with non-singular power-law kernel:

\[
GLC_{\alpha, \beta}^{(\beta)} \Theta(x, \tau) = \frac{1}{\Gamma(1 + \beta)} \frac{d}{d\tau} \left[\int_{0}^{\tau} (\tau - \tau')^{\beta} \Theta(x, \tau') d\tau' \right] \]

subject to the initial condition
\[\Theta(x,0) = \delta(x) \]

(54)

where \(\delta(x) \) is the Dirac delta function \([4]\) and the Liouville-Caputo general fractional partial derivative of the function \(\Theta(x, \tau) \) of order \(\beta \) with respect to the time variable, \(\tau \), is defined by:

\[
\frac{d^{\beta}}{dt^{\beta}} \Theta(x, \tau) = \frac{1}{\Gamma(1+\beta)} \int_0^\tau (\tau - s)^{\beta-1} \frac{d\Theta(x,s)}{ds} \, ds
\]

(55)

Conclusion

The present study addressed the derivations of the Riemann-Liouville and Liouville-Caputo GFD with non-singular power-law kernel. The relationship between the GFD with non-singular power-law and Mittag-Leffler function kernels were discussed. The Riemann-Liouville and Liouville-Caputo general fractional time anomalous diffusion models with non-singular power-law kernel were obtained. The models are successfully adopted to model the anomalous behaviors of the complex phenomena.

Acknowledgments

This work is supported by the State Key Research Development Program of the People Republic of China (Grant No. 2016YFC0600705), the Natural Science Foundation of China (Grant No. 51323004), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD2014), and by FCT and CIDMA through project UID/MAT/04106/2013 (Torres and Debbouche).

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>time co-ordinate, [s]</td>
<td></td>
</tr>
<tr>
<td>(x)</td>
<td>space co-ordinate, [m]</td>
<td></td>
</tr>
</tbody>
</table>

Greek Symbols

- \(\beta \) – fractional order, [-]
- \(\kappa \) – diffusion coefficient, \([m^2\cdot s^{-1}]\)

References