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The problem of laminar free convection in a trapezoidal enclosure, filled with a fluid-
saturated porous medium and with internal heat generation has been investigated using 
a penalty finite element analysis. The enclosure bottom wall is heated at a constant 
temperature and the top wall is subjected to a constant cold temperature whereas the left 
inclined wall is considered to be non-isothermal and the right inclined wall is isother-
mally cooled. The effects of the porosity of the medium and heat generation on the 
isotherms and streamlinesare investigated. The rate of heat transfer from the walls of the 
cavity is examined as well. The Prandtl number of the fluid is chosen to be 0.7 (air) 

5whereas the value of the Rayleigh number is selected to be 10 .
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Introduction
The phenomenon of free convection in cavities of various geometries has received 

considerable attention in recent years. This is due to its many significant applications in 
engineering and science such as boilers, systems of nuclear reactor, energy storage and conserva-
tion, fire control, chemical, heating, preservation of canned foods and double-panel windows. 
The investigation of free convection in a trapezoidal enclosure is very challenging compared with 
classical rectangular or square enclosures due to the existence of inclined walls. The 
complexgeometry of the trapezoidal cavity requires an precise and large effect in code construc-
tion and grid generation. In the past few decades, many studies were presented on free convection 
in trapezoidal enclosures.

Lam et al. [1], presented experimental and numerical studies of free convection in 
trapezoidal enclosures constructed of two vertical isolated side walls, a horizontal hot bottom 
wall and an inclined cold top wall. Arici and Sahin [2] numerically investigated the natural 
convection in a partially divided trapezoidal enclosure by using the control volume method. The  
investigation is done for two different placements of a divider to gether with a non-divider 
enclosure. The steady free convection of air-flow in a 2-D side-heated trapezoidal room has been 
numerically investigated by Lasfer et al [3]. The geometry considered was, a vertical right cooled 
sidewall, an inclined left heated sidewall, and two isolated horizontal lower and upper walls. The 
obtained results showed a great dependence of the heat transfer on inclination angle, the flow 
fields, Rayleigh number and aspect ratio. Recently, Selimefendigil et al. [4] numerically studied 
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the mixed convection in a lid-driven 3-D flexible walled trapezoidal enclousure with nanofluids 
using finite element method based on Galerkin weighted residuals. They concluded that the fluid-
flow and heat transfer characteristics are influenced by the variations in the elastic modulus of the 
side wall, Richardson number and volume fraction of nanoparticle for different side wall 
inclination angles of the trapezoidal cavity.

Extensive investigations have also been carried out to study the heat transfer convection 
in the fluid-saturated porous medium because of its applicability in various industrial applica-
tions concerning the geothermal fields [5], process of phase change [6], applications of heat 
exchanger [7], bioengineering [8], etc. Recently, various studies on free and mixed convection in 
the porous cavities with many geometrical shapes were carried out by many researchers [9-16]. 
The trapezoidal enclosures are useful in many applications and many studies were presented in 
the literature based on the practical applications. Free convective in the trapezoidal cavities (both 
fluid and porous media) are highly useful for applications in desalination [17], the greenhouse-
type solar stills [18], solar cavity receiver [19], etc. Although various attempts were made to study 
the natural convection in irregular porous cavities, the study of effects of heat generation and 
porosity on natural convection in the porous trapezoidal cavities with linearly heated inclined 
wall (s) is yet to appear in the literature.

The aim of the current study is to investigate the effects of the porosity of the medium 
and heat generation on the natural convection in a trapezoidal porous cavity by using the well-
known Boussinesq approximation model [20]. The momentum equation including Navier-
Stokes inertia term, Brinkman viscous diffusion term and Boussinesq buoyancy term defined 
with temperatures derived for the porous media in the presence of the of temperature-dependent 
heat generation effect makes this work discernible. Contextually the present work will focus on 
the influences of medium porosity and heat generation on the free convection in a trapezoidal 
cavity filled with fluid saturated porous medium.The obtained numerical results is validatedby 
comparingthem with those obtained from a commercial COMSOL Multiphysics software. 

Mathematical formulation
Consider a trapezoidal cavity of height, H, filled with a fluid-saturated porous medium 

containing a Newtonian fluid with Prandtl number Pr = 0.7 and initial temperature, T , at rest as c

shown in fig. 1. The considered porous medium is a non-deformable and homogeneous one, i.e. 
its porosity is constant. The bottom wall of the cavity is uniformly heated at T  while the top wall h

and the top major section of the right inclined wall are maintained at a constant cold temperature 
T . The temperature condition of the left inclined wall is considered as a non-isothermal type c

where the temperature reduces linearly from T  at the bottom to T  at the top. The boundary h c

condition at the lower section of right inclined wall deserves some explanation. This model is 
based a reactor with a small gap at the bottom of the right inclined wall of length s  = H/5 where s 1

is the right inclined wall side length. This gap is filled with a sodium deposit and the temperature 
within the gap will vary linearly from T  to T . The influence of temperature-dependent heat h c

generation in the flow is also taken into consideration. The heat generation volumetric rate, Q, is 
assumed to be: 

where Q  is the heat generation constant. As described in [20], theprevious relation is valid forthe 0

approximation of the state of some exothermic process and having T  as the onset temperature, c

which means that the heat flows from the surface to the cavity.
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(1)Q =
Q  (T − T ),0 c

0, 
T ≥ Tc

T ˂ Tc



In this study, we assume a steady laminar flow of a viscous incompressible fluid having 
fixed properties. The well-known Boussinesq approximation is used to include buoyancy effect. 
Under the previous assumptions, the governing equations for momentum, mass, and energy in a 
2-D Cartesian co-ordinate system can be written as:

where u and ν are the fluid velocity components in the x- and y-directions, respectively T − the 
temperature, p − the pressure, K − the porous medium permeability, β − the coefficient of 
volumetric thermal expansion, g − the gravitational accelerationand ρ, v, C  and α are, respec-p

tively, the fluid density, the kinematic viscosity, the specific heat at constant pressure and the 
thermal diffusivity. The inertia effects of the porous medium have been neglected in the 
momentum equations, and the viscous dissipation effects are neglected from the energy equation 
as well. The permeability of the porous medium, K, is defined by [20],

+where ε  is the media porosity and d is the solid sphere diameter.
The following dimensionless variables are used in order to non-dimensionalize eqs. 

(2)-(5):

Substituting the dimensionless variables in eqs. (2)-(5), one can obtain the following 
dimensionless form of the governing equations: 
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Figure 1. Schematic diagram of the physical and co-ordinate systems
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where

where − Ra is the Rayleigh number, λ − the heat generation parameter, and γ − the porosity 
parameter which inversely proportional to Darcy number. The corresponding boundary condi-
tions in a dimensionless form will becomeas follows:
– all boundaries are rigid and non-slip, i. e. U = V = 0.
– at bottom wall: θ = 1
– at top wall: θ = 0
– at left inclined wall: θ = 1– s
– at lower part of the right inclined wall: θ = 1 – s / s  , and1

– at upper part of the right inclined wall: θ = 0.
The heat transfer rate through the cavity walls was quantified using a local and averaged 

Nusselt number along bottom and top walls of the cavity. Nusselt number represents the ratio of 
convective to conductive heat transfer across the boundaries. Due to the problem dimensionless 
representation, the local Nusselt number along the bottom surface, along the top surfaceand 
averaged Nusselt number can be defined, respectively:

The fluid motion is presented by the stream function, , that will be obtained from ψ
velocity components U and V :

Using eq. (14), the following equation can be written:

The boundary condition of the stream function  is considered as , due to the no-slip ψ = 0
condition at all boundaries of the cavity.

Numerical procedure and code validation
The finite element method based on the Galerkin weighted residuals has been used to 

solve the governing eqs. (8)-(11) subject to the given boundary conditions. The considered 
technique is well described in [9, 12, 21-24]. Based on the considered method, the cavity domain 
is discretized into a number of suitable finite elements as a grid. Here, the given domain is 
composed into non-uniform biquadratic elements. As described in [9, 12, 21-24], the continuity 
eq. (8) will be used as a constraint and hence the pressure distribution will be obtained using this 
constraint. To solve eqs. (9)-(11), a penalty finite element method will be used. So, the pressure P 
can be removed from eqs. (9) and (10) using the introduced constraint equation:

(14)

(15)
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where  is a penalty parameter. For large values of δ, the continuity equation is satisfied. The  δ
7typical value of δ that provide a consistent solution is δ = 10 . The components of the  velocity (U, 

V) and temperature (T) are expanded using the basis set  as:k  1

N{φ } k=

where N is the number of nodes of each biquadratic element and  represents the elements shape φk

functions. According to the Galerkin weighted residual finite element technique, the weight  
functions are the same as the elements shape functions, and hence the non-linear residual 
equations  related to eqs. (9) (11) and (15), respectively, can be easily   jR  , i =1, 2, 3, N,  j = 1, 2, 3, 4 -i

deduced at nodes of the internal element domain We.
As illustrated in [9, 12, 21], biquadratic shape functions with three point Gaussian 

 jquadrature is used to calculate the integrals in the residual equations, . The residual equations iR
are solved using Newton-Raphson method to estimate the coefficients of the expansions in eq. 
(17). The boundary conditions will be incorporated into the assembled global system of non-
linear equations to make it determinate. We use L norm for the residual vectors as a stopping 2 

criteria of the Newton-Raphson iterative process. When L norm for each of the variables satisfy 2 

the next convergence criteria:

the solution convergence will beguaranteed.
Eight node biquadratic elements have been used with each element. The co-ordinate X -

Y will be mapped into of the natural co-ordinate ξ - η because of the irregularity of the element 
shape before evaluating the Gaussian integration. The transformation between (X, Y) and (ξ, η) 
co-ordinates can be defined by:

where (X , Y ) are the X, Y co ordinates of the k nodal points and  is the local basis function k k - φ  (ξ, η)k

in ξ η domain. Here, the eight basis functions used are of a serendipity type [25], -  

Thus, the domain integrals in the residual equations are approximated using eight node 
biquadratic basis functions in  - η domain using eqs. (19) and (20).ξ

Relating to air, the Prandtl number valueis chosen as 0.7 and the Rayleigh number is 
5considered to be 10 . Various non-uniform biquadratic grids were constructed over the domain 

using the commercial grid generator ANSYS. In order to obtain aproper grid distribution with 
accurate results, a grid independency study isac complished. The results of the averaged Nusselt 
number at the bottom hot surfaces for several grid sizes are displayed in tab. 1 for λ = 0, γ = 10.0 
and λ = 10.0, γ = 0. Grid type G4 with 735 number of elements is selected in the subsequent 
computations.

The results obtained by the present code isvalidated against the numerical results 
computed by COMSOL. A comparison between some of the obtained results and those obtained 
by COMSOL are graphically presented and discussed in the next section. It is worth noting that 

(17)

(18)
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the COMSOL results are computed at optimal parameters to guarantee reliability, convergence 
and accuracy of the solution.

Results and discussion
Numerical results of free convection heat transfer for a heat-generating fluid in a 

trapezoidal enclosure filled with a saturated porous medium with uniform porosity subject to a 
non-uniformly heated left inclined wall are presented in order to determine the effects the 
medium porosity and heat generation parameter on the isotherms, streamlines and heat transfer 
inside the enclosure. As declared, the dimensionless controlling parameters are the Rayleigh 
number, the Prandtl number, the porosity parameter, and the heat generation parameter. Here we 
have obtained solutions for various values of the porosity and the heat generation parameters.

In figs. 2-5, the contours of the stream function and isotherms are shown for values of λ 
equal to 0.0, 10.0, 20.0, and 40.0 when γ equal to 0.0, i. e. for a pure fluid. figs. 2(a)-5(a), illustrate .
that the secondary vortex that developed at the left top corner will be grown and divided with the 
increase of the heat generation parameter, λ. Also, as the heat generation parameter increases, the 
centre of the primary vortex moves towards the right inclined wall of the cavity. The present 
investigation is extended for higher values of λ and it has been predicted that two vortices of equal 
strength would occur at a specific value of λ while with further increase of this parameter, the 
secondary vortex would be dominant in the cavity.

From fig. 2(b), one can observe that the isotherms are clustered near to the enclosure 
bottom surface, which means that steep temperature gradients in the upright direction of this area 
are existed. By comparing figs. 3(b)-5(b) with fig. 2(b), it can be observed that the increase of λ 
will make the clustered isotherms region moves to right and on the way to the enclosure top cold 
surface. In the middle of the enclosure, the temperature gradient appears to increase as well. It is 
predicted that extra increase of the heat generation parameter will make the isotherms to be 
clustered in the region close to the top surface.

Figure 6 shows Nusselt number distributions along the bottom and top surfaces for 
different values of the heat generation parameter. From fig. 6(a), it can be drawn that the rate of the 
heat transfer is low at the left part of the bottom surface and increase in the direction of right part 
in an oscillation manner due to the conduction of sodium deposit placed in the bottom right 
corner. Moreover we can conclude that as the heat generation parameter increases, the heat 
transfer rate from the bottom surface will decrease. This is due to the mechanism of heat 
generationthat will rise the fluid temperature close to the bottom surface, resulting in enlarged 
resistance to the heattransfer in vertical direction. This conclusion is in a favourably agreement 
with the results obtained in [20] for a rectangular enclosure. The distribution of heat transfer from 
the top surface is displayed in fig. 6(b). The top left and right corner zones are inactive regions and 
heat transfer is mainly caused by conduction. It can be seen that there is a peak value of heat 
transfer that moves towards the left corner, where the left inclined wall meets the top surface, as 
the heat generation parameter increases. This peak value increases with the increase of the heat 
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Table1. Grid independence test of Nu  results at the bottom hot surface form

λ = 0, γ = 10.0 and λ = 10.0, γ = 0

G1

G2

G3

G4

Grid name

111

239

371

735

# Elements

0.3634

0.3991

0.4016

0.4084

Nu  for λ = 0, γ = 10.0m

0.3899

0.4102

0.4161

0.4213

Nu  for λ = 10.0, γ = 0m



due to heat generation phenomena. From fig. 6, it can be concluded that the present results is 
favourably in agreement with COMSOL results for all values of  λ. 

The effect of the medium porosity on the isotherms is discussed in fig. 7. The figure 
presents results for values of the porosity parameter γ = 10.0, 20.0, and 30.0 in absence of the heat 
generation. As shown in fig 7, the temperature gradient decreases as γ increases, as the resistance 
to fluid flow increases. Also, the effect of flow convection decreases as the porosity parameter 
increases.  It is expected that extra increase of the porosity parameter, which is accompanied by 
adecrease in Darcy number, will make the temperature distributions and clustered isotherms 
more uniformly.

In fig. 8, the effects of the medium porosity on the heat transfer from the bottom and top 
surfaces are discussed in absence of heat generation. In this figure, the heat transfer distribution is 
displayed for values of the porosity parameter γ = 0.0, 10.0, 20.0, and 30.0 fig. 8(a) illustrates that, 
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Figure 2. (a) Streamlines and (b) isotherms for λ = 0.0 and γ = 0.0

Figure 3. (a) Streamlines and (b) isotherms for λ = 10.0 and γ = 0.0

Figure 4. (a) Streamlines and (b) isotherms for λ = 20.0 and γ = 0.0

Figure 5. (a) Streamlines and (b) isotherms for λ = 40.0 and γ = 0.0

(a)

(a)

(a)

(a)

(b)

(b)

(b)

(b)



the heat transfer from the bottom wall decreases as the porosity parameter increases. From fig. 
8(b), it can be seen that there is a peak value of heat transfer that decreases with the increasing of γ. 
In general, as the porosity parameter increases, the heat transfer decreases from the bottom and 
top surfaces. This result was mentioned in [20] in case a rectangular enclosure. The previous 
result can be rewritten as, the heat transfer from the bottom and top surfaces enhances with 
increasing values of Darcy number. It is worth noting that figs. 6 and 8 demonstratea good 
agreement between the results obtained with the present code and those obtained with the 
COMSOL model for all values of λ and γ. This agreement can be considered as a sufficient 
validation of the present study.
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Figure 6. Local Nusselt number distribution along the bottom and top surface for different values of
λ when γ = 0.0 using present code results (solid lines) and COMSOL results (open circles)

Figure 7. Isotherms for (a) γ = 10.0, (b) γ = 20.0, and (c) γ = 30.0 while λ = 0.0
(a)                                                      (b)                                                     (c)

Figure 8. Local Nusselt number distribution along the bottom and top surfaces for different values of 
γ when λ= 0.0 using present code results (solid lines) and COMSOL results (open circles)
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Figure 9 shows the averaged Nusselt number along the bottom and top surfaces for 
various heat generation parameter when γ = 0.0  and medium porosityparameter when λ = 0.0. As 
shown in fig. 9(a), the averaged heat transfer enhances as the value of  the porosity parameter 
decreases, i. e. as the Darcy number increases, due to the increasing in the porous medium .
permeability. Figure 9(b) illustrates that the averaged heat transfer from the top surface increases 
while from the bottom surface decreases as the heat generation parameter enhances.

Conclusion
In this study, the effects of medium porosity and heat generation on the free convection 

of a laminar flow and heat transfer in a non-isothermal trapezoidal enclosure have been investi-
gated using a finite element method. The problem of buoyancy effects is treated using Boussinesq 
approximation. From the presented results, It can be concluded that the increasing of heat 
generation in the fluid will reduce thermal gradients near the heated bottom wall of the enclosure 
and leads to increase thermal gradients at the cold top wall. The main vortex strength induced by 
buoyancy is decreased due to the increasing of heat generation, and additional closely like double 
vortex structure grows. In absence of the heat generation, the averaged heat transfer from the 
enclosure surfaces enhances as the values of Darcy number increases and porosity parameter 
decreases, due to the increasing in the permeability of the porous medium. Finally, the reliability 
of the present results was confirmed by comparing them with the results obtained by COMSOL 
model.
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Figure 9. Averaged Nusselt number along the bottom and top surfaces vs. (a) γ when λ = 0.0 and
(b) λ when γ = 0.0

(a)                                                                                 (b)
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