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Abstract: This paper studies the unsteady flow and heat transfer of Maxwell 

nanofluid in a finite thin film over a stretching sheet. The heat generation, 

Brownian motion and thermophoresis are taken into consideration. Coupled 

nonlinear governing partial differential equations are formulated and local 

similarity solutions are obtained by BVP4C. Results show that, unlike 

Newtonian fluid, the relaxation characteristics of Maxwell fluid have 

strongly effects on thermal and concentration transmission, there exist 

intersections in the distributions of temperature and concentration, the local 

Nusselt number and Sherwood number increases with the increase of 

Brownian number. Moreover, the combined effects of pertinent physical 

parameters, such as the unsteadiness, Deborah number, Prandtl number, 

Lewis number, Brownian number, thermophesis parameter, local Nusselt 

number and local Sherwood number on velocity, temperature and 

concentration fields are also analyzed and discussed.  

Key words: Maxwell nanofluid; Unsteady flow; Brownian motion; 

Thermophoresis. 

1. Introduction 

The flow and heat transfer within a thin film liquid over an unsteady stretching sheet has 

acquired special attention due to its widespread technological applications. In particular, it is closely 

related to the mechanical forming processes, such as wire and fiber coating, melting-spinning, 

foodstuff processing and extrusion processing. The most important aim of every extrusion is to keep 

the surface quality of the extrudation and the flow induced by the stretching motion of a flat elastic 

sheet. Therefore, it is worthy to analyze the momentum and thermal transports within a thin film liquid 

film on a continuously stretching surface. 

Considering the steady two-dimensional flow of a Newtonian fluid, Crane [1] studied the fluid 

flow caused by a stretching sheet continuously moving with a linear velocity variation. Wang [2] 

applied similarity transformation to reduce the unsteady Navier-Stokes equations and found 

asymptotic and numerical solutions. Andersson et al. [3] investigated the momentum in a thin liquid 

film of a power-law fluid caused by the unsteady stretching surface. Chen [4] researched the 

momentum and heat transfer of a power-law fluid film due to the unsteady stretching sheet. Wang [5] 

analyzed the momentum and heat transfer in a laminar liquid film by using the homotopy analysis 
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method. Dandapat et al. [6] analyzed the influence of the thermo-capillarity on the Newtonian fluid 

flow within a liquid film on an unsteady stretching sheet. Chen [7] investigated the thermo-capillarity 

effects of power-law liquids. Abel et al. [8] presented a mathematical analysis of MHD flow and heat 

transfer to a laminar liquid film over an unsteady stretching surface. Abbas et al. [9, 10] examined 

two-dimensional magnetohydrodynamic boundary layer flow of an upper-convected Maxwell fluid 

and the flow of a second grade fluid over a stretching sheet. Hayat et al. [11] studied the mass transfer 

of the upper-convected Maxwell fluid past a porous shrinking sheet. Sajid et al. [12] researched the 

unsteady flow of a second grade over a stretching sheet. More references about the flow and heat 

transfer of Maxwell fluid had been studied in Refs. [13-16]. Combined electrical MHD Ohmic 

dissipation forced and free convection of an incompressible Maxwell fluid on a stagnation point had 

been studied by Hsiao [17]. Kumaran [18] investigated the magnetohydrodynamic Casson and 

Maxwell flows over a stretching sheet with cross diffusion. More references about the flow and heat 

transfer of Maxwell nanofluid had been studied in Refs [19-20]. 

In recent years, convective heat transfer in nanofluids has received considerable attentions. The 

word “nanofluid” was coined by Choi [21] who describes a liquid suspension containing uitra-fine 

particles with typical length on the order of 1-50 nm. Conventional heat transfer fluids, including oil, 

water and ethylene glycol mixture are poor heat transfer fluids. The thermal conductivity of these 

fluids plays an important role on the heat transfer coefficient between the heat transfer medium and 

surface. Experimental studies [22-24] displayed that the thermal conductivity of the base liquid can be 

enhanced even with small volumetric fraction of nanoparticles. Khan and Pop [25] considered the 

laminar fluid flow of a nanofluid past a stretching sheet. By considering the Brownian diffusion and 

thermophoresis, the flow in nanofluids had attracted considerable attentions and a good amount of 

literatures had been generated on this problem [26-31]. Shehzad et al. [32] studied the heat and mass 

transfer characteristics in three-dimensional flow of an Oldroyd-B fluid. Lin et al. [33] researched the 

flow of MHD pseudo-plastic nanofluid in a finite film over unsteady stretching surface with internal 

heating. Li et al. [34] explored the unsteady MHD flow and radiation heat transfer of nanofluid within 

a finite thin film over stretching surface. The heat and mass transfer of nanofluid with thermal 

radiation and chemical reaction can be found in references [35-37]. Bhatti et al. [38] studied the 

Titanium magneto-nanoparticles suspended in water-based nanofluid by entropy analysis. Some more 

studies on the flow of nanofluid through a Riga plate can be found from references[39-41]. Hayat et al. 

[42, 43] explored the magnetohydrodynamic flow of nanofluid in presence of nonlinear thermal 

radiation and the flow due to a rotating disk with a numerical study. 

Motivated by the above discussions, we analyze the unsteady Maxwell fluid flow and mass 

transfer in a finite thin film induced by an unsteady stretching sheet. The effects of heat generation, 

thermophoresis and Brownian motion [26-31] are also taken into consideration. The governing 

equations are reduced to ordinary differential equations by suitable similarity transformation and then 

solved numerically by using BVP4C from Matlab. The effects of involved parameters on the 

distributions of velocity, temperature, concentration and thin film thickness are presented graphically 

and discussed. 

2. Problem Formulation 

Consider an unsteady flow and heat transfer of an upper convected Maxwell Nanofluid in a 

finite thin liquid film over an unsteady stretching sheet. The fluid motion within the film is mainly on 
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account of the stretching of the elastic sheet, as shown in Fig. 1. It is assumed that the Maxwell 

Nanofluid is incompressible and the flow is laminar. 
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Fig. 1. Schematic of the physical model 

 

The sheet emerges from a narrow slit at the origin of a Cartesian coordinate system. The 

continuous sheet moves with the velocity 

1
s

bx
u

at



                                (1) 

where a  and b  are both positive constants. It should be noted that the analysis is valid just for time 

1/t a . Let the concentration sC  at the sheet surface vary with the distance x  from the slit as 

2 3/2

0 (1 )s refC C C dx at                               (2) 

where 0C  is the concentration at the origin, d  is the positive constant, refC  is the reference 

concentration. The surface temperature sT  of the sheet varies with the distance x  from the slot and 

time t , given by 

2 3/2

0 (1 )s refT T T dx at                                (3) 

where 0T  denotes the temperature at the slot, refT  is the positive reference temperature. The flow is 

governed by the continuity and momentum equations in the forms 

                                         0V                                 (4) 

e                                 (5) 

in which V  denotes the velocity vector and   is the Cauchy stress tensor. The acceleration 

vector e  is defined as  

 
dV V

e V V
dt t


   


                             (6)  

The Cauchy stress tensor in Maxwell fluid is given by  

pI                                     (7)  

In which an extra stress tensor N  has the relation  
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11
D

Dt
 

 
    

 
                                (8) 

Where   is the relaxation time,   is the dynamic viscosity and the first Rivlin-Ericksen tensor 

1  can be expressed as  

1

TL L L V                              (9) 

And for a two rank tensor   we have 

  TD
V L L

Dt t

 
      


                         (10) 

Under these assumptions and Oberbeck-Boussinesq’s approximation [26-31, 34], the governing 

equations for the model can be written as 

0
u u

x y

 
 

 
,                                       (11) 

2 2 2

2 2

22 2 2
2 2

2 2

2 2

2

u u u
u v

t x t y tu u u u
u v

t x y yu u u
u v uv

x y x y






   
  

           
      
   

    

,             (12) 

 
22

2

0

+ + T
B

DT T T T C T T
u v Q t D

t x y y y y T y
 

        
     

         

,            (13) 

2 2

2 2

0

+ T
B

DC C C C T
u v D

t x y y T y

    
  

    
,                           (14) 

where u  and v  are the velocity components along the x  and y  direction, t  is the time,   is 

the dynamic viscosity,   is the density of the base fluid, 0(1 )at    is the relaxation time, 0  

is a constant,   is the thermal diffusivity of the base fluid,   is the ratio of nanoparticle heat 

capacity and the base fluid heat capacity, C  is the local concentration of the fluid, BD  is the 

Brownian diffusion coefficient, TD  is the thermophoretic diffusion coefficient, the term  Q t  is 

the heat generated  0 or absorbed  0 per unit volume which can be given by [34, 35] 

    
1

0 0 1Q t aQ T T at


                              (15) 

The boundary conditions for the problem can be given by 

su u , 0v  , sT T , sC C , at 0y                        (16) 

0
u T

y y

 
 

 
, 

h h
v u

x t

 
 

 
, 0

C

y





, at y h                (17) 

where 0Q  is the internal heating parameter and  h t  is the thin film thickness. 

3. Numerical solutions 
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For the sake of simplifying investigation, we introduce dimensionless variables f ,  ,    

and the similarity variable   as: 

   

1
2 2

, y,
1

fbx v
x t f

at
 

 
    

,                   (18) 

 
 

2

0 3/2
1

ref

dx
T T T

at
  


,                   (19) 

 
 

2

0 3/2
1

ref

dx
C C C

at
  


,                   (20) 

 

1/2

1f

b
y

v at


 
    

 ,                            (21) 

 

1/2

( )
1f

b
h t

v at


 
    

,                          (22) 

where  , ,x y t  is the stream function which is define by /u y    and /v x   ,   is 

the dimensionless film thickness of the liquid film， /fv    is the kinematic viscosity. 

According to these new variables, the governing equations (11)-(14) and the associated 

boundary conditions (16)-(17) are converted into 

  
 

  

2 2 2

2

1 7 1
2

2 4 4

2 3 2 0

f S f f f f f De S f f f

De S f f f f f f f f f f f f f

  

 

    
                  

    

                     

,   (23) 

2

0

1 3 1
2 0

2 2
SQ Nb Nt f f S

Pr
         

 
             

 
+ ,      (24) 

 
3 1

2 0
2 2

Nt
Le f f LeS

Nb
      

 
          

 
,          (25) 

 0 1f   ,  0 0f  ,  0 =1 ,  0 1  ,                 (26) 

 =0  ,   0   ,  
1

2
f S  ,   0f   ,             (27) 

Here, /S a b  is the unsteadiness parameter, 0De b  is the Deborah number, Pr /fv   is 

the Prandtl number, /f BLe v D  is the Lewis number,  0
B

s

f

D
Nb C C




   is the Brownian 

number,  0

0

T
s

f

D
Nt T T

T




   is the thermophesis parameter. According to Refs. [25-27, 34], the 
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expressions for the local Nusselt number xNu  and local Sherwood number xSh  are given as 

follows: 

 1 2 0/

x xNu / Re    and  1 2 0/

x xSh / Re   ,               (28) 

Following the literatures [25-27], the reduced local Nusselt number rNu  and reduced local 

Sherwood number rSh  can be introduced and presented as follows 

 1 2 0/

r x xNu Nu / Re     and  1 2 0/

r x xSh Sh / Re    ,     (29) 

where x s fRe u x v  is the local Reynolds number. 

For solving the ordinary differential equations (23)-(25) with the boundary conditions (26)-(27), 

we transform (23)-(25) to a system of first order differential equations. We denote f , f  , f  ,  , 

 ,   and   variables by 1y , 2y , 3y , 4y , 5y , 6y  and 7y , respectively. 

  1f y ,                                     (30) 

2f y  ,                                     (31) 

3f y  ,                                    (32) 

2 2

2 2 2

( ( / 2) ( ) ( (2 7 / 4)) 2De

(2 3 )) / (1 / 4 )

f S f f f f f De S f f f f f

De S f f f f f f DeS Def Def

 

  

                 

              
,         (33) 

4y  ,                                      (34) 

5y  ,                                     (35) 

2

5 5 7 5 1 5 2 4 4 5 0 4

1
2

2
y Pr Nby y Nty y y y y S y Sy SQ y 

            
  

,             (36) 

6y  ,                                      (37) 

7y  ,                                      (38) 

 7 6 2 1 7 6 7 5

1
2

2

Nt
y Le y y y y LeS y y y

Nb
 

        
 

,             (39) 

 2 0 1y  ,  1 0 0y  ,  4 0 =1y ,  6 0 1y  ,                          (40) 

 3 0y   ,  5 =0y  ,  7 0y   ,  1

1

2
y S  ,                     (41) 

In order to obtain the numerical solutions, we use the program Bvp4c in MATLAB to solve the 

seven ordinary differential equations (31)-(33), (35)-(36) and (38)-(39) with eight boundary conditions 

(40)-(41). There exists a certain relationship between   and S  from the boundary condition
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 1

1

2
y S  . 

4. Results and discussion 

In this section, the numerical solutions of Eqs. (23)-(27) are obtained by the program Bvp4c. To 

verify the accuracy and effectiveness of this method, present results are compared with some of the 

earlier published results in Table 1. It is noteworthy that the present numerical solutions are in very 

good agreement. 

Table 1 

Comparison of the dimensionless film thickness   and friction coefficient  0f   for 

0De  . 

S Wang[5] Abel et al. [8] Present results 

   0f      0f      0f   

0.4 5.122490 -6.699120 4.981455 -1.134098 4.981454 -1.134096 

0.6 3.131250 -3.742330 3.131710 -1.195128 3.131710 -1.195125 

0.8 2.151990 -2.680940 2.151990 -1.245805 2.151993 -1.245805 

1.0 1.543620 -1.972380 1.543617 -1.277769 1.543616 -1.277769 

1.2 1.127780 -1.442631 1.127780 -1.279171 1.127780 -1.279171 

1.4 0.821032 -1.012784 0.821033 -1.233545 0.821032 -1.233544 

1.6 0.576173 -0.642397 0.576176 -1.114941 0.576173 -1.114937

64  

 

Figs. 2-4 show the distribution of the dimensionless velocity, temperature and nanoparticle 

volume fraction with different values of De ，respectively. It is clear that the thin film thickness 

increases as De  increases. As shown in Fig. 2, the velocity boundary layer becomes lager with the 

increase of De . It is found that both the velocity and thin film thickness increase with the increases 

(increasing value of De ) of elastic force of the fluid. The free-surface velocity arrives at its minimum 

value for 0De  , which showing that the internal elastic force of fluid disappears, the fluid becomes 

a Newtonian fluid. Fig. 3 show that the boundary layer thickness of temperature and nanoparticle 

volume fraction decreases with the increase of De . Fig. 4 indicates that the nanoparticle volume 

fraction increases at first, arriving at a maximum, and then it decreases with   increases. It illustrates 

that the viscoelastic relaxation framework system has strongly effects on thermal and concentration 

transmission. 
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Fig. 2. Variations of the velocity  'f   with different values of De  for 0.6S  , 3Le  , 

Pr 1 , 0.2Nb  , 0.8Nt  , 0 0.5Q  . 

 

 

Fig. 3. Variations of the temperature ( )   with different values of De  for 0.6S  , 3Le  , 

Pr 1 , 0.2Nb  , 0.8Nt  , 0 0.5Q  . 
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Fig. 4. Variations of nanoparticle volume fraction     with different values of De  for 

0.6S  , 3Le  , Pr 1 , 0.2Nb  , 0.8Nt  , 0 0.5Q  . 

Figs. 5-7 display effects of the unsteady parameter on the velocity, temperature and nanoparticle 

volume fraction, respectively. The velocity boundary layer decreases with the decrease of S . There 

exists intersections in the temperature and nanoparticle volume fraction profiles with the relaxation 

effects  0De   for different values of S , which is different from the based fluid of Newtonian 

 0De   [34]. It implies that the unsteady parameter has a critical influence on the thermal and 

concentration transmission. 

 

 

Fig. 5. Variations of the velocity  'f   with different values of S  for 0.2De  , 3Le  , 

Pr 1 , 0.2Nb  , 0.8Nt  , 0 0.5Q  . 
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Fig. 6. Variations of the temperature ( )   with different values of S  for 0.2De  , 3Le  , 

Pr 1 , 0.2Nb  , 0.8Nt  , 0 0.5Q  . 

 

 

 

Fig. 7. Variations of nanoparticle volume fraction     with different values of S  for 

0.2De  , 3Le  , Pr 1 , 0.2Nb  , 0.8Nt  , 0 0.5Q  . 

 

The variations in the nanoparticle volume fraction with different values of 0Q  are shown in Fig. 

8. It is illustrated that the nanoparticle volume fraction decreases with the increase of 0Q . Fig. 9 

indicates the effects of S  on the nanofluid film thickness with different values of De . The 

nanofluid film thickness decreases with S  increases from 0.4 to 1.9. When 0S  , as seen in Fig. 9, 

it represents the liquid film thickness of an infinitely thickness    . For the particular value 

0S  of S , no solutions can be obtained. While 0S S , it stands for the case of an infinitesimal 
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thick fluid layer  0  . 

 

Fig. 8. Variations of nanoparticle volume fraction     with different values of 0Q  for 

0.2De  , 3Le  , Pr 1 , 0.2Nb  , 0.8Nt  , 0.6S  . 

 

 

Fig. 9. Variations of the film thickness   with S  for different values of De  for 3Le  , 

Pr 1 , 0.2Nb  , 0.8Nt  , 0 0.5Q  . 

 

Fig. 10 and Fig. 11 show the variations of the reduced local Nusselt number and Sherwood 

number with different values of De  versus increasing S , respectively. Fig. 10 displays that the 

reduced local Nusselt number increases at first, and then decreases with S  increases for different 

values of De . It shows that the rate of heat transfer is more evident with the effect of unsteady 

parameter. Moreover, the rate of heat transfer increases with the viscoelastic relaxation  De  
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increases. As seen in Fig. 11, the reduced local Sherwood number increases with the increase of S  

for different of De . It implies that the increase of unsteady parameter leads to the enhancement of 

concentration transfer of nanoparticle. 

 

Fig. 10. The reduced Nusselt number rNu  with S  for different values of De  for 3Le  , 

Pr 1 , 0.2Nb  , 0.8Nt  , 0 0.5Q  . 

 

 

Fig. 11. The reduced Sherwood number rSh  with S  for different values of De  for 3Le  , 

Pr 1 , 0.2Nb  , 0.8Nt  , 0 0.5Q  . 

 

Fig. 12 and Fig. 13 present the distribution of the reduced local Nusselt number and Sherwood 

number with different values of Nb  versus increasing Nt , respectively. It can be seen from Fig. 12 

that the rate of heat transfer increases with the increasing thermophoresis parameter and Brownian 

motion parameter. Fig. 13 indicates that the concentration transfer of nanoparticle decreases with the 

thermophoresis parameter increases, while it increases with the increasing Brownian motion 
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parameter. 

 

 

Fig. 12. The reduced Nusselt number rNu  with Nt  for different values of Nb  on condition 

that 0.2De  , 3Le  , Pr 1 , 0.6S  , 0 0.5Q  . 

 

 

Fig. 13. The educed Sherwood number rSh  with Nt  for different values of Nb  on condition 

that 0.2De  , 3Le  , Pr 1 , 0.6S  , 0 0.5Q  .. 

 

5. Conclusions 

The flow and heat transfer of Maxwell nanofluid in a finite thin film over an unsteady stretching 

sheet with internal heat generation or absorption are studied. And meanwhile, the effects of Brownian 
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motion and thermophoresis are considered. The problem is strongly nonlinear. For simplicity, local 

similarity solutions are obtained by using the method of similarity transformation. Further research 

about the experiments should be done to verify the accuracy and reliability of the numerical results. 

The influence of the involved parameters on the velocity, temperature, nanoparticle volume fraction 

and thin film thickness are analyzed. What we have obtained can be summarized as follows: 

(i) The Deborah number tends to increase the velocity boundary layer and increase the thermal and 

concentration transmission of the fluid. The thin film thickness also increases with the increase of the 

Deborah number. 

(ii) The thin film thickness decreases with the increase of the unsteady parameter. There exists 

intersections in the temperature and nanoparticle volume fraction profiles with the relaxation effects 

for different values of S . It implies that the unsteady parameter has a critical influence on the thermal 

and concentration transmission. 

(iii) The rate of heat transfer increases at first, and then decreases as the unsteady parameter increases. 

The concentration transfer of nanoparticle increases with the increase of the unsteady parameter.  

(iv) The rate of heat transfer increases with the increasing thermophoresis parameter and Brownian 

motion parameter. The concentration transfer of nanoparticle decreases with the thermophoresis 

parameter increases, while it increases with the increasing Brownian motion parameter. 
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Nomenclature 

a - constant, [ 1s ]                               b - stretching rate, [ 1s ] 

C - nanoparticle fraction, [-]                      0C , refC  - nanoparticle fraction constant, [-] 

d - constant, [-]                                 BD - Brownian diffusion coefficient, [-] 

TD - thermophoretic diffusion coefficient, [-]          De - Deborah number, [-] 

f - dimensionless stream function,[-]                 h - film thickness, [ m ]                             

Le - Lewis number, [-]                            Nb - Brownian motion parameter,[-]                

Nt - thermophoresis parameter, [-]                   xNu - local Nusselt number, [-]                       

rNu - reduced local Nusselt number, [-]                Pr - Prandtl number, [-] 

Q - heat generated or absorbed per unit volume. [-]       0Q - internal heating parameter, [-] 

Rex - local Reynolds number,[-]                     xSh - local Sherwood number, [-] 

rSh - reduced local Sherwood number, [-]              S - unsteadyness parameter, [-] 

T - temperature, [ K ]                              0T , refT - temperature constant, [ K ] 

t - time, [ s ]                                      u - horizontal velocity component, [ 1ms ] 

su - sheet velocity, [ 1ms ]                          v - vertical velocity component, [ 1ms ] 

x - horizontal coordinate, [ m ]                       y - vertical coordinate, [ m ] 

Greek letters 

 - dimensionless film thickness, [-]                    - similarity variable, [-] 

 - dynamic viscosity, [ 1 1kgm s  ]                     - density, [ 3kgm ] 

 - thermal diffusivity,[ 2 1m s ]                        - dimensionless temperature, [-] 

 - rescaled nanoparticle volume fraction. [-]             - stream function, [-] 
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 - kinametic viscosity, [ 2 1m s ] 

 - ratio between the effective heat capacity of the nanoparticle aterial and heat capacity of the fluid, 

[-] 
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