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A magnetohydrodynamic turbulent channel flow under the influence of a wall-
normal magnetic field is investigated using the Large-Eddy-Simulation technique 
and k-equation subgrid-scale-model. Therefore, the new solver MHDpisoFoam is 
implemented in the OpenFOAM CFD-Code. The temporal decay of an initial tur-
bulent field for different magnetic parameters is investigated. The rms values of 
the averaged velocity fluctuations show a similar, trend for each coordinate di-
rection. 80% of the fluctuations are damped out in the range between 0 < Ha <  
< 75 at Re = 6675. The trend can be approximated via an exponential of the form 
exp(−a·Ha), where a is a scaling parameter. At higher Hartmann numbers the 
fluctuations decrease in an almost linear way. Therefore, the results of this study 
show that it may be possible to construct a general law for the turbulence damp-
ing due to action of magnetic fields. 
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Introduction 

The influence of static magnetic fields on turbulent flows, which occur in numerous 
astrophysical, geophysical and technological applications, has received the attention of many 
researchers in the field of magnetohydrodynamics (MHD) since Hartmann and Lazarus [1, 2] 
discovered that a turbulent flow can be forced to a laminar one by the action of an applied 
magnetic field in 1937. The Lorentz forces arising from the induced currents in electrically 
conducting fluids lead to additional Joule dissipation and tend to suppress flow gradients 
along the direction of the magnetic field lines. 

The transition behavior is, for example, a relevant problem in the field of metallurgy 
for flow control and crystal growth, as well as for liquid metal flows in fusion reactor blan-
kets. It is also of interest in the general context of shear flow transition, because the magnetic 
field may modify the mechanisms that have been identified as important in subcritical transi-
tion of non-conducting shear flows. 
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Recent numerical studies have been performed, focusing on the transition in MHD 
periodic channel flows with a uniform, wall-normal magnetic field. This so-called Hartmann 
flow is considered as a prototypical MHD shear flow. When the magnetic field is sufficiently 
strong, it modifies in the laminar case the Poiseuille velocity profile and gives a rise to the 
boundary layers, where Lorentz and viscous forces balance. The thickness of these layers is 
inversely proportional to the magnetic induction. Turbulent fluctuations become strongly ani-
sotropic or even quasi-2D under the action of applied magnetic fields. 

This study investigates the transition phenomenon in the case of low magnetic 
Reynolds numbers using Large-Eddy-Simulations (LES). In contrast to the related work in the 
field of MHD, the induction equation is used instead of the electric potential equation. This 
brings the advantage of directly relating the main hydrodynamic quantity to the magnetic one. 
Furthermore, the clear analogy between the induction and the Navier-Stokes equation allows 
an easy implementation in an existing CFD-Code, here in the pisoFoam solver of 
OpenFOAM-4.1, and adapting the same discretization and segregated solution techniques as 
in the hydrodynamic case. 

For weak magnetic fields it is shown by experiments [3-5] and a few direct numeri-
cal studies [6-11], that MHD turbulence does not differ from non-magnetic turbulence. There-
fore, there is no need to modify existing LES models to take MHD effects into account. The 
influence of LES subgrid-scale (SGS) models on the flow prediction have been investigated 
by few researchers. Shimomura [12] and Kobayashi [13] already tested the classical 
Smagorinsky model (SM) for a periodic Hartmann flow. Both concluded that this model is 
not adequate to predict turbulent MHD flows, mainly because the value of the Smagorinsky 
constant remains unchanged over the simulation time and is not adapted to MHD turbulence 
damping effects. On the contrary, the dynamic Smagorinsky model (DSM) used by Knaepen 
and Moin [14], Kobayashi [13] as well as Sarris et al. [15] is reported to work well since the 
Smagorinsky constant automatically decreases while the magnetic field increases. Therefore, 
the DSM might be able to automatically switch off when the turbulent flow is forced to a lam-
inar one by the action of the magnetic field. Thus, the DSM shows the potential to reproduce 
the transition from turbulent MHD flow to a laminarized one without special treatment for the 
magnetic field. 

The DSM is not implemented in the OpenFOAM-code. Therefore, a different 
OpenFOAM SGS model is used here, namely the dynamic k-equation SGS model. Due to the 
extra resolved transport equation in the dynamic k-equation SGS model, a more accurate time 
scale to the unresolved scales compared to the dynamic SM is expected. To prove this as-
sumption, experimental results or direct numerical simulations are necessary, which should be 
performed in future works. 

This work focuses on the case of homogeneous, initially isotropic, decaying turbu-
lence and the flow in a periodic channel. The evolution of the turbulent velocity fluctuations 
is investigated for increasing magnetic field values. 

This work is organized as follows. First, the governing equations for MHD flows are 
derived and the LES approach as well as SGS model for MHD turbulence are summarized. In 
the section Implementation the discretization and the solution procedure for the MHD equa-
tions as well as their implementation in OpenFOAM is described. Furthermore, using the ana-
lytical Hartmann solution for laminar MHD flows, the implementation is verified in the sec-
tion Verification. The numerical results for the periodic channel are presented and discussed 
in the section Numerical results. Finally, the paper is ended with conclusions and further re-
marks. 



Woelck, J., et al.: Large-Eddy-Simulation of Turbulent Magnetohydrodynamic Flows 
THERMAL SCIENCE, Year 2017, Vol. 21, Suppl. 3, pp. S617-S628 S619 
 

Mathematical and numerical background 

Magnetohydrodynamics 

This paper considers the Newtonian flow of an electrically conduction fluid and as-
sumes that the applied magnetic field is uniform and orthogonal to the flow direction. Fur-
thermore, it is assumed that the applied magnetic field is uniform and orthogonal to the flow 
direction. Considering the low magnetic Reynolds number Rm = meL0u0 case, the governing 
equations can be simplified using the in ductless approximation. The magnetic Reynolds 
number is a dimensionless scaling parameter representing the relative strength of advection 
and diffusion in the induction equation. The e is hereby the electric conductivity and u0 and 
L0 the characteristic velocity and length scale, respectively. 

Perturbations of the magnetic field induced by the fluids motion are small in com-
parison with the imposed magnetic field and can therefore be neglected [16]. Then, the flow is 
governed by the Navier-Stokes (1) and continuity equation (2), representing the momentum 
and mass conservation: 
 

2 1 1
( ) L p

t


 


       

u

u u u f  (1)

 
0  u  (2)

 
L  f j B  (3)

Here p, , and  denote the pressure, density, and kinematic viscosity. The fields of velocity, 
electric current density, and magnetic induction are represented by u, j, and B. Coupling be-
tween the velocity and magnetic field is realized by the Lorentz force, eq. (3), which acts per-
pendicular to the magnetic field lines. 

Under the present conditions of a small magnetic Reynolds number R 1m   the 
electric current density can be expressed by Ampere’s law (4) under the in ductless MHD as-
sumptions according to [16, 17], which is one of the classical Maxwell equations: 

 
m B j  (4)

Replacing the current density in eq. (1) and after some analytical manipulation, the Lorentz 
force Lf can be expressed as: 
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Note that (BB) is the dyadic product of the vector B with itself. Analyzing eq. (5) the first 
term on the right side can be identified as being the gradient of a scalar and the last term as a 
stress tensor. In literature, these two terms are called the magnetic pressure and the Maxwell 
stress tensor, respectively [18]. 

To obtain the evolution of the magnetic field it is necessary to solve an additional 
transport equation, which is called the induction, eq. (6), and can be deduced from the Max-
well equations. Namely the laws of Ohm j = e(E + uB), Ampere B = mj, and Faraday 
E = B/t: 
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In analogy to other diffusive processes, like heat conduction, the quantity
1( )m m e     in eq. (6) can be interpreted as a kind of magnetic diffusivity. 

For a precise description of MHD phenomena, the Gauss law for magnetic fields, 
 eq. (7), must be satisfied, which is also one of the Maxwell equations and describes the 
solenoidal nature of the magnetic field. Even small deviations from this condition can produce 
large errors in the solution of the MHD equations, resulting in unphysical forces parallel to 
the magnetic field [19]. 

Using the vector identities: 

2  B B  (8)

( ) ( ) ( )     u B B u u B  (9)

and eq. (2) as well as eq. (7) the Helmholtz formulation (10) of the induction equation can be 
obtained, which looks similar to the Navier-Stokes equation [20]: 

2( ) ( ) 0mt
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u B B B u  (10)

The induction equation in Helmholtz form (10) describes the temporal evolution of 
the magnetic field B/t due to advection (u)B and diffusion 2 .m  B  The last term on the 
right side of eq. (10) represents sources (B)u, which are generated by mechanical stretching 
of the magnetic field lines due to the velocity field. 

In contrast to the above shown formulation of the MHD equations used in almost all 
studies concerning MHD turbulence, an alternative formulation is used in the following, 
where the electric field is represented by the potential . This leads to a Poison equation (11) 
defining the electric potential  and to a modified form of Ohm’s law (12): 

2 ( )    u B  (11)

   j u B  (12)

If the magnetic field is static, this formulation explicitly guarantees 0,  B but re-
quires additional boundary conditions for . These need special, complicated treatment to en-
sure that the induced magnetic field vanishes at the boundaries. Therefore, in this study the 
induction equation is chosen for defining the main electromagnetic quantity B. This brings the 
advantage of directly relating the main hydrodynamic quantity u to the magnetic one B. Fur-
thermore, the analogy between induction (10) and Navier-Stokes (1) equations allows an easy 
implementation in an existing CFD-Code, here in the pisoFoam solver of OpenFOAM-4.1, 
and adapting the segregated approach for an effective solution. 

Large-Eddy-Simulation 

The main idea of Large Eddy Simulations (LES) is to compute or resolve the large- 
-grid-scale (GS) features of the flow directly, whereas the dissipation scales are substituted by 
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specific sub-grid-scale (SGS) models. Via low-pass filtering of the Navier-Stokes equation (1) 
GS f  and SGS 'f  features can be separated, i. e. ' f f f  This is done by evaluating the 
convolution integral: 

( ) ( , '; ) ( )d ( , ; )d 1G f x x G x x x     f x x x   (13) 

over the whole computational domain. Here, is the filter width and ( , )G G x is the filter 
kernel. 

As discussed in the section Introduction there is no need to modify the existing LES 
models to take MHD effects into account. Therefore, the LES form of the Navier-Stokes 
equation with added Lorentz force, eq. (1), for the resolved velocity field u  is obtained after a 
spatial filter operation by: 
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Note, that uu uu  and cannot be determined numerically. Therefore, a modeling approxima-
tion must be used for this term. The difference between both sides of the inequality leads to 
the SGS stress tensor: 

 τ uu uu  (15) 

To close eq. (14) the SGS stress tensor must be expressed in terms of the resolved 
velocity u  to remove the energy from the resolved scales, mimicking the drain associated 
with Kolmogorov cascade. A variety of so-called SGS models have been proposes in the lit-
erature for this purpose. 

To improve the accuracy of the Smagorinsky model, one equation models were de-
veloped. Most of them are based on the eddy-viscosity concept and drop the assumption of 
equilibrium regarding the unresolved scales. To prove the accuracy, an extra transport equa-
tion for subgrid turbulence is added. One of the quantities often chosen is the subgrid-scale 
kinetic energy, which is defined as: 

0.5tr( )k  τ  (16) 

The eddy-viscosity can then be transformed into the form: 

kC k    (17) 

According to Horiuti [21] the k-transport equation is defined by eq. (18): 
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The values of the different constants are typically CK = 0.05, C = 1.0, and Ckk = 0.1, 
respectively. Although this model suffers from the same deficiencies as the Smagorinsky 
model, it provides a more accurate time scale to the unresolved scale-model through the inde-
pendents definition of the velocity scale in the extra transport equation. A study by Fureby 
[22] has shown the one-equation model to be effective and superior to the SM model. 

In the dynamic form of this model the coefficient CK is dynamically recalculated as 
part of the flow calculations. In this study the dynamic procedure proposed by Germano et al. 
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[23] and the least-square technique suggested by Lilly [24] is used to compute the dynamic 
constant CK: 

KC
 


 
LM

MM
 (19) 

where L and M are given by: 

 2ˆˆ ˆ 2 ˆ ˆ   L uu uuM S S  (20) 

Here, the test-filtered û are calculated using a box filter in physical space. The test-
filter width is twice the size of the grid size. 

Implementation 

Equations (1) and (10) along with the continuity constraints for the magnetic, eq. 
(7), and velocity field, eq. (2), are representing the governing system of the MHD equations. 
To describe the MHD effects properly, inter-equation coupling between the equations is nec-
essary. In the present work, therefore, the pisoFoam solver of the OpenFOAM-4.1 release is 
modified and merged with the mhdFoam solver to MHDpisoFoam. This solver can treat dif-
ferent incompressible flow problems and includes a variety of turbulence models. The hydro-
dynamic equations are discretized using the finite-volume method (FVM) and solved in a seg-
regated approach using the pressure implicit with splitting operators (PISO) algorithms ac-
cording to Issa [25]. Due to the obvious analogy between the Navier-Stokes eq. (1) and induc-
tion equation (10) it is possible to use the same discretization technique and solution algo-
rithms for the magnetic part, which is described in detail for example in [26-28]. Therefore, 
another loop (BPISO) is added to the solution algorithm to solve the induction equation. 

Both equations are discretized and represented in OpenFOAM-Syntax according to 
listing 1 and 2, respectively. Note, that phi is the volume velocity flux defined on the faces of 
each cell and is a result of the discretization procedure, since in FVM the Gauss theorem is 
used to transform volume into surface integrals. Likewise, phiB defines the magnetic flux 
through the cell faces. In order to obtain an efficient solution and to avoid staggering on col-
located meshes, a Rhie and Chow [29] approach is used to interpolate the face values of the 
magnetic field. Therefore, the pressure gradient p is not present in listing 1. An additional 
pressure equation is constructed and solved in the segregated approach. Afterwards, the veloc-
ity field is corrected with this solution. This requires the solution of a pressure equation for B, 
such that a new and fictitious pseudo-magnetic pressure pB is introduced to derive a flux equa-
tion from the solenoidal constraint. Both the induction and pseudo-magnetic pressure equation 
are coupled together in the BPISO loop. Therefore, the fluxes exactly obey the free-divergen- 

 
fvVectorMatrixUEqn 
( 
fvm::ddt(U) + fvm::div(phi, U) 
+ turbulence−>divDevReff(U) 
− fvc::div(phiB,2.0*DBU*B) 
+ fvc::grad(DBU*magSqr(B)) 
); 

fvVectorMatrixBEqn 
( 
fvm::ddt(B) 
         + fvm::div(phi,B) 
         − fvc::div(phiB,U) 
         − fvm::laplacian(DB,B) 
); 

Listing 1: Navier-Stokes equation (1) Listing 2: Induction equation (10) 
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ce constraint of the magnetic field 0  B , whereas the pB field is non-zero and represents 
the discretization error as the difference between fluxes and interpolated cell-centered values. 
However, it approaches zero when the system of equations is iterated to convergence. Note, 
that no additional correction of B is necessary, since pB has impact on this field and is only in-
troduced to get the fluxes phiB. 

Due to the nature of the magnetic field, fluxes at the boundaries should be orthogo-
nal to the magnetic field lines. Therefore, at these boundaries the Neumann condition pB = 0 
must be applied and all others the Dirichlet condition pB = 0. 

Furthermore, all spatial derivatives are discretized in OpenFOAM using the imple-
mented second-order differencing scheme. Whereas the time is advanced by a second-order 
Adam-Bashworth scheme. 

Verification 

To verify the implemented model, the laminar Hartmann case is considered. This is 
a flow between two walls which is modified by a magnetic field perpendicular to the 
streamwise direction of the flow. The analytical solution for the velocity profile for the fully-
developed flow is, according to Hartmann [2] defined by: 

0

Ha[cosh(Ha) cosh(Ha / )]

Ha cosh(Ha) sinh(Ha)

u y L

u

 



 (21) 

where L is the characteristic length scale 
and u0 the velocity scale. 

Expression Ha = LB0[σe/(ρν)]
1/2 rep-

resents the Hartmann number, which is a 
measure for the ratio between viscous and 
electromagnetic forces. As shown in fig. 1 
perfect agreement between analytical and 
numerical results is observed. Further-
more, this example shows how in a 
bounded laminar flow with a prescribed 
flow rate the magnetic field changes the 
slope of the velocity profile from 
Poiseuille to a plug flow. 

 

Numerical results 

To demonstrate the ability of the implemented OpenFOAM solver MHDpisoFoam 
together with the dynamic k-equation SGS model to perform MHD LES, an incompressible 
channel flow is investigated. A case comparable to the DNS by Dong et al. [11] and Kenjeres 
et al. [30] as well to the LES by Knaepen et al. [14], Kobayashi [13], and Krasnov [31] is 
constructed. The configuration is shown in fig. 2, where x, y, and z denote the streamwise, 
spanwise, and wall-normal directions, respectively. Periodic boundary conditions are imposed 
in x- and z-directions. The artificially created inflow boundary condition mimics the assumed 
flow between the infinitely extend horizontal walls only if the computational domain is large 
enough to obtain a turbulent state without long-range spatial correlations. This is why  

Figure 1. Velocity profiles for various Ha 
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2Lπ  Lπ  L is chosen for computational domain dimensions in compliance with Krasnov et 
al. [31], with a channel width of L = 2 m. 

In x- and z-direction Nx = 40 and Nz = 30 cells are distributed uniformly, whereas  
Ny = 50 cells with non-uniform spacing are placed in y-direction, which agglomerate near the 
wall. A comparison of the results generated via DNS and LES by Krasnov et al. [32] with the 
results discussed later in this section show that the here chosen grid resolution is not adequate 
to capture the Hartmann shear layers. The thickness of these layers is defined by: 

0

1

eB




  (22) 

and requires at least nine computational cells for a proper resolution. Since this study focuses 
on MHD turbulence damping effects far away from the walls using integral values for the tur-
bulent fluctuations, this near-wall refinement is not strictly required. 

The flow in the computational domain is driven by a constant pressure gradient be-
tween the in- and outlet of the computational domain. At the walls the no-slip boundary con-
dition u = 0 for the velocity is applied. Furthermore, the zero gradient conditions for the hy-
drodynamic p = 0 and pseudo-magnetic pressure pB = 0 are used. A uniform magnetic 
field of magnitude B0 is applied in wall-normal direction. The material parameters used in this 
study are listed in tab. 1. 

To generate a suitable, homogeneous turbulence field as initial condition, an initial 
simulation is executed. Starting with a random, isotropic velocity field and without an applied 
magnetic field this simulation is performed until a statistically steady state is reached, which 
can be identified by an approximate time independence of the averaged GS components of the 

velocity field. This data is used to 
initialize a set of MHD simulations 
at a fixed Reynolds number of  
Re = 6675 with increasing Hart-
man numbers. Averaging of the 
flow quantities starts only, when 
the transition to a new statistically 
stationary state is completed. For 
this purpose, the transient global 
quantities such as the kinetic ener-
gy and the mean velocity of the 

flow are monitored during run time. The flow statistics are collected and averaged over ten 
eddy turnover times T = L/u0. 

 
     Table 1. Physical properties 

Viscosity () Density () Conductivity (e) Permeability (m) 

2·10−5 m2/s 103 kg/m3 106 A2s3/(kgm3) 10−6 kgm/(A2s2) 

Effect on turbulent flow structures 

The effect of magnetic fields on turbulent flow structures is exemplarily shown in 
fig. 3 for the velocity field in the yz-plane. Two unique impacts are clearly visible. First, it is 
recognizable that the turbulent fluctuations in the shear layer are sufficiently reduced in 

Figure 2. Periodic channel configuration 
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streamwise direction by increas-
ing the magnetic field. Further-
more, the thickness of these layers 
is reduced. Second, these struc-
tures elongate in the direction of 
the magnetic field lines. The gen-
eral trend is that they become 
larger, slower and less intense as 
the value of the magnetic field in-
creases. Note, that these structures 
are also present in the upper right 
snapshot, but hardly recognizable. 
Further, the effect of the magnetic 
field seems to be stronger in the 
core of the channel, where the tur-
bulence structures are suppressed 
to a larger degree than near the 
walls. These observations are in 
qualitative agreement to those presented by Lee and Choi [10] as well by Krasnov et al. [32]. 

Integral characteristics 

Figure 4 shows the time evolution of the mean velocity for the three coordinate di-
rections. The data is sampled and averaged at the point (2, 1, 1) in the middle of the computa-
tional domain. Analyzing the three graphs it is obvious, that the damping effects of the mag-
netic field mainly takes place in the streamwise direction. As the magnetic field strength in-
creases, the mean velocity of the streamwise component is approaching 0.135xu  m/s. This 
is the specified inlet velocity, i. e. the specified velocity without the downstream generated 
fluctuations. Therefore, almost all turbulent fluctuations are significantly damped out in the 
streamwise direction due to the action of the magnetic field. The damping effect of the mag-
netic field seems to be less intense in the other two directions, as the viscosity dampens the 
fluctuations to zero even when no magnetic field is active. 

Furthermore, fig. 4 shows that after t = 100 s an almost statistically, stationary state 
is reached. The turbulent fluctuations are filtered from the velocity field and averaged 
overfive eddy turnover times T = L/u0 = 14 s. Figure 5 shows the root-mean-square (rms) val-
ue of the averaged velocity fluctuations u' standardized with the fluctuations u0',	which are 
present in the non-magnetic case. Note, that in this case the velocity field of the whole domain 
is used for the calculation instead of the local sampling point used before. 

Generally, the same trend of the fluctuation components is conspicuous. In the range 
of 0 < Ha < 75, 80% of the fluctuations are damped out by the magnetic field and an almost 
laminar state is observable. The trend could be approximated by an exponential function of 
the form f(Ha) = exp(–aHa), where a = –0.015 is a scaling parameter. 

At higher Hartmann numbers the fluctuations decrease linearly. Therefore, it is pos-
sible to derive a general law for the magnetic damping of fluctuations. This is a first attempt 
and should be proven by more numerical simulations for various Hartmann and Reynolds 
numbers. The point of transition from the exponential to the linear course should be examined 
more precisely. 

Figure 3. Development of the velocity components in the  
yz-plane in the middle of the channel. The upper snapshots 
show the streamwise component and the lower ones the wall-
normal component. From left to right the Hartmann num-
ber is increasing (Ha = 0; 25; 75) 
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Figure 4. Temporal evolution of the mean velocity components 
 

 

Figure 5. Evolution of the rms value of velocity fluctuations standardized with non-magnetic ones 

Conclusions 

A magnetohydrodynamic turbulent channel flow under the influence of a wall- 
-normal magnetic field was investigated using the Large-Eddy-Simulation technique. There-
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fore, a new solver MHDpisoFoam was implemented in the OpenFOAM CFD-code and veri-
fied against the analytic solution for the laminar flow. Using the dynamic k-equation subgrid- 
-scale model as closure, the turbulence damping effect of the uniform magnetic fields was in-
vestigated for a generic channel flow at Re = 6675. Cyclic boundary conditions are imposed 
in stream- and spanwise directions to generate a self-sustaining turbulence. The initial data 
precursor simulation without a magnetic field was performed until a statistically steady-state 
was reached. This data was used as a starting condition for simulations with increasing mag-
netic field strengths. Temporal evolution of the mean value indicated a significant damping 
effect in streamwise flow direction while no significant damping effect could be observed in 
the other two directions. On the other hand, the rms values of the averaged velocity fluctua-
tions have shown a similar, significant trend for each coordinate direction. Eighty percents of 
the fluctuations are damped out in the range between 0 < Ha < 75. The trend could be approx-
imated via an exponential equation of the form exp(–aHa), where a is a scaling parameter. At 
higher Hartmann numbers the fluctuations decrease in an almost linear way. Therefore, the re-
sults of this study show that it may be possible to construct a general law for the magnetic 
turbulence damping. However, more numerical simulations are needed to derive a general 
law. The damping trend should be investigated for a wide range of Reynolds and Hartmann 
numbers. 
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