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It is a well-established fact that significant gain in the heat transfer rate can be 
obtained by altering that flat surface texture of the working body. The most con-
venient alteration, in view of mathematical handling, is the wavy one. Existing 
studies reveal that the convective heat transfer phenomenon is affected signifi-
cantly due to the presence of a solid wavy surface. How does the phenomena of 
entropy generation is effected due to a wavy surface is the question investigated in 
this manuscript. The expressions for irreversibility distribution rate, Bejan num-
ber, and volumetric entropy generation number have been evaluated by Keller-Box 
method. The effect of important parameters of interest, such as wavy amplitude, 
Prandtl number, and group parameter on irreversibility distribution rate, Bejan 
number and entropy generation number, have been discussed in detail. The study 
reveals that entropy generation number decreases and irreversibility rate increas-
es by increasing the amplitude of the wavy surface.
Keywords: entropy generation, viscous fluid, irreversibility, Bejan number,  

wavy surface, Keller Box method

Introduction

Efficiency of the thermal engineering systems can always be upgraded by minimizing 
the heat losses. So far, no mechanical device has been invented which can completely convert 
the supplied energy into useful work. The heat losses are always tried to be minimized by utiliz-
ing various techniques. The most effective design of a thermal system can be accomplished by 
reducing entropy generation in the systems. Entropy generation is the key issue in several engi-
neering equipment for example cooling of nuclear reactors and electronic devices, geophysical 
fluid dynamics, energy storage systems, heat exchangers, etc. Thermodynamic irreversibility is 
linked with entropy generation and it exists in all types of heat transfer phenomenon. Charac-
teristics of convective heat transfer, that is, viscous dissipation and finite temperature gradient 
are the main causes of irreversibility and are accountable for entropy generation. Entropy gen-
eration minimization (EGM) is the method credited to Bejan [1] by which thermodynamic opti-
mization of a real system can be achieved by controlling both the causes of irreversibility. Since 
the primary objective of EGM analysis of flow and heat transfer phenomenon is to investigate 
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the situations for the full use of the energy resources by reducing energy losses and improving 
the thermal systems. To do this the Second law of thermodynamics is used because it examines 
the reversibility in the system through entropy generation rate. 

The analysis of entropy generation in convective heat transfer phenomena is associated 
to some physical parameters, like entropy generation number, Bejan number and irreversibility 
rate, as determined by Bejan [2] and subsequent investigators (e. g., Paoletti et al. [3] and Ben-
edetti and Sciubba [4]). Using this approach, the causes of entropy production in four different 
configurations of convective heat transfer process were investigated by Bejan [5]. After this 
groundbreaking work of Bejan a lot of investigations have been made on entropy analysis in 
convective heat transfer during the last few years. The investigation of mixed convection flow 
with entropy generation was studied by Abu-Hijleh and Heilen [6]. They found that increase in 
the buoyancy parameter and the Reynolds number also increases the entropy generation rate. 
Tasnim et al. [7] analyzed entropy generation with hydromagnetic effect in a porous channel. 
Forced convection inside a channel was studied by Mahmud and Fraser [8]. They derived ana-
lytic expression for the entropy generation number and the Bejan number. Carrington and Sun 
[9] used control volume method approach to calculate entropy generation in some flow situations 
of internal and external flows. Selamet and Arpaci [10] discussed entropy generation in bound-
ary-layer flows and determined the same two major causes of entropy production. Munawar et 
al. [11] discussed the causes of entropy production in flow over an oscillatory stretching cylinder 
and concluded that the entropy rate increases with amplitude of oscillations. Recently, Munawar 
et al. [12] investigated the Second law analysis in a peristaltic flow of a variable viscosity fluid 
and reveal that entropy production is high in the contracted region and reduces in the wider part 
of channel. Some more interesting studies on the topic could be of interest for readers [13-20].

Despite of the aforementioned studies a more significant and frequently occurring 
flow configuration is the convective heat transfer over irregular surface which is seen in several 
practical applications. To enhance the convection phenomena surfaces are intentionally rough-
ened. Since this roughening element disrupts the flow, consequently, the convection strengthens 
and hence heat transfer rate increases. In this regard, Yao [21] investigated the natural convec-
tive heat transfer phenomena from vertical sinusoidal wavy surfaces in a viscous fluid. Rees 
and Pop [22] analyzed natural convective flow along vertical wavy surface in porous media. 
Hossain and Rees [23] examined heat and mass transfer in a natural convection flow along a 
vertical wavy surface. Rees and Pop [24] analyzed free convective and heat transfer along wavy 
horizontal plate. Hossain and Pop [25] discussed the influence of MHD on boundary-layer flow 
on a moving wavy surface. Narayana et al. [26] investigated effects of double diffusive on a 
horizontal wavy plate in porous medium. We found two investigations; Chen et al. [27] and 
Chen et al. [28] who examined entropy production in two different flow situations over a wavy 
plate under the influence of thermal radiation effects. They concluded that the increase in ther-
mal radiation results in increase of entropy. This can be explained as the fluid absorbs thermal 
radiation heat flux which increases heat transfer of the flow field. Therefore, the entropy genera-
tion due to heat transfer is more prominent for wavy surface. Readers are referred to some other 
interesting investigations on heat transfer through wavy surface [28-35]. A literature survey 
immediately reveals that the entropy analysis of convective heat transfer phenomena is limited 
to self-similar flows and no attention has been given to the non-similar flows. Owing to this 
fact, our focus here is to examine entropy generation in a non-similar boundary-layer flow due 
to a uniformly moving wavy plate. The impact of surface texture upon the entropy generation 
number and irreversibility rate have been investigated in detail and discussed in section Results 
and discussion with the help of graphs and tables.



Mehmood, A., et al.: Entropy Analysis in Moving Wavy Surface Boundary-Layer 
THERMAL SCIENCE: Year 2019, Vol. 23, No. 1, pp. 233-241 235

Mathematical description

We consider steady incompressible viscous flow due to a horizontal wavy sheet mov-
ing uniformly in x-direction. The surface shape is assumed to be smooth differentiable de-
scribed by the function:

 ( ) sin xy S x
l

α π = =  
 

 (1)

The schematic of the plate geometry and the as-
sociated co-ordinate system is shown in fig. 1.

Essentially the flow is 2-D and non-similar in 
nature. The problem has already been modelled in 
detail by Hossain and Pop [25] in which the authors 
have considered an electrically conducting fluid along 
with uniform magnetic field. The governing non-sim-
ilar equations in the absence of magnetic field imme-
diately:
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where the following set of dimensionless variables has been utilized:
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where Pr is the Prandtl number and Re the Reynolds number and the prime denotes differenti-
ation with respect to η. The parameter σ and σξ represent the wavy contribution in eqs. (2) and 
(3). The appropriate boundary conditions of the system and read as Hossain and Pop [25]:
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The local skin friction coefficient and the local Nusselt number are given:
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where τw is the wall shear stress and qw is the wall heat flux which are given:
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Figure 1. Schematic diagram of the flow 
configuration
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in which n̂  is the unit normal to the wavy surface. After using eqs. (4) and (7), the skin friction 
coefficient and the local Nusselt number, respectively, take the form:

 ( ) ( ) ( ) ( )1/2 1/21Re  '' ,0 , Nu Nu Re ' ,0  f fx x x xC C f ξ θ ξ
σ

−= = = = −  (8)

Entropy analysis

For 2-D viscous incompressible fluid which follows the Fourier law of heat conduc-
tion and is in local thermodynamic equilibrium. The volumetric rate of entropy generation in 
Cartesian co-ordinate system is defined [1, 2, 5, 36]:
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The previous expression shows that the viscosity, μ, and the thermal conductivity, k, 
create irreversibility. Entropy rate is positive and finite only if velocity gradient or temperature 
exists in the medium. The entropy generation number is the ratio of volumetric entropy gener-
ation rate to the characteristic entropy generation rate. Using set of dimensional variables listed 
in eq. (4) the total entropy generation number takes the form:
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where SG0 = k(Ω/l)2, Ω = ΔT/T∞, T∞, ω = Br/Ω, and Br = μUw
2/kΔT are the characteristic entropy, 

the dimensionless temperature difference, the reference temperature of the fluid, group parame-
ter, and Brinkman number, respectively. The first term represents the heat transfer irreversibility 
denoted by NH and the second term represents fluid friction irreversibility and is denoted by NF. 
The ratio of heat transfer irreversibility to the total irreversibility is known as the Bejan number 
which is given:

 1Be
1 Φ

=
+

 (11)

where Φ = NF/NH is the irreversibility distribution ratio. The Bejan number helps in character-
izing the major role of irreversibilities with in the range [0, 1]. If the value of the Bejan number 
is near 0 the entropy is dominated by fluid friction effects. However, if Be ≈ 1 then the irrevers-
ibility due to heat transfer is dominant. Similarly, effect of irreversibility due to both factors are 
equal if Be = 1/2.

Numerical solution

The governing non-similar system of PDE (2) and (3) are solved by Keller-Box 
scheme (for details see. [37-40]) together with implicit finite difference method along with 
boundary conditions. According to this procedure, eqs. (2) and (3) are reduced to a system of 
first order ODE. Using the central difference formula we approximate the functions and their 
derivatives in finite difference form to get non-linear difference equations. After this we use 



Mehmood, A., et al.: Entropy Analysis in Moving Wavy Surface Boundary-Layer 
THERMAL SCIENCE: Year 2019, Vol. 23, No. 1, pp. 233-241 237

Newton’s method to linearize non-linear difference equations and solve with the help of block 
tri-diagonal algorithm.

In order to investigate the accuracy and validity of the computed results, a compari-
son of present results with available results in literature are shown in tabs. 1 and 2. We clearly 
see from the table that our results of the skin friction coefficient and the local Nusselt number 
are very close to the existing results reported in Rees and Pop [24], Hossain and Pop [25], and 
Mehmood et al. [32]. This provides confidence in the present numerical results. We use the 
same procedure to solve eqs. (2), (3), and (5) in order to make the further analysis.

Table 1. Comparison of present results with already 
published data when Pr = 0.7 and α = 0

Present [32] [24] [25]
Cfx(Rex)1/2 −0.44375 –0.44375 −0.4438 −0.4439

Nux(Rex)−1/2 −0.34924 –0.34924 −0.3492 −0.3509

Table 2. Comparison of present results with  
already published data when Pr = 7, ξ = 0.5  
and α = 0.2

Present [32]
–Cfx (Rex)1/2 0.87458 0.87458
–Nux (Rex)−1/2 0.92201 0.92201

Results and discussion

The numerical results are used to ex-
amine the entropy generation phenomenon 
in the flow with the help of graphs shown 
in figs. 2-18. The entropy number is plotted 
against the variable ξ for different values of 
amplitude of surface oscillations. It is noticed 
that the entropy generation is high for small ξ 
and reduces gradually in the downstream direction. This is because of the velocity and tempera-
ture gradients at the wall are less at downstream than at upstream. Moreover, it is also observed 
that the magnitude of oscillation in entropy number increases as the parameter α increases. The 
reason of this fact is somewhat trivial. Large values α of enhance the velocity fluctuations due 
to which the fluctuations as the velocity and temperature gradients also increase. Consequently, 
the amplitude of entropy fluctuations also increases. Figure 3 depicts the behavior of entropy 
generation across the boundary-layers. It is seen from the figure that entropy number is higher 
near the wall and vanishes in the freestream flow region. The reason behind this fact is again 
the large velocity gradients in the near wall region. To discriminate the entropy generation rates 
corresponding to the viscous and thermal dissipation the Bejan number is plotted in figs. 4 and 5 
against variables ξ and η, respectively. Figure 4 demonstrates that the size of fluctuations in 
Bejan number increases as one moves in downstream direction. In this graph an interesting role 
of α is highlighted, the fluctuations in the Bejan number are of very small amplitude at the up-

Figure 2. The NS against ξ for different α Figure 3. The NS against η for different α
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stream locations which significantly develop at the downstream locations. Figure 5 shows that 
near wall irreversibility is dominated by heat transfer effects and far away from the wall is the 
region of fluid friction dominancy. As one moves away from the wall the dominancy of entropy 
due to heat transfer becomes weaker and weaker and the two rates, namely the heat transfer 
entropy rate and the viscous entropy rate balance each other at η = 0.9 (roughly).

Figures 6-9 unveil the behavior of entropy generation phenomenon for different val-
ues of group parameter ω. It is revealed from figs. 6 and 7 that entropy number rises as ω 
increases. Such type of result is quit expected since an increase in ω gives rise to the viscous 
dissipation effects which causes the production of entropy. In addition, increasing amplitude of 
oscillation in entropy number profiles is noticed as ω increases. This is because of the strong 
frictional effect of the fluid particles which produces more fluctuations in the velocity gradient. 
Interesting effects of α on the Bejan number are observed in figs. 8 and 9. Upon increasing the 
values of ω the Bejan number decreases significantly. For sufficiently large values of ω the 
dominant role of the heat transfer entropy can be reversed, figs. 8 and 9. This is because of the 
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Figure 4. Graph of the Bejan number 
for different value of α

Figure 5. Graph of the Bejan number 
for different α

Figure 6. Effects on NS for different ω 
when α = 0.2

Figure 7. Effect of varying ω on NS 
against η
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fact that the increasing values of ω give rise to the ongoing convection phenomena due to which 
the entropy rate due to viscous resistance increases. Consequently the Bejan number reduces 
upon increasing the values of ω. Growing amplitude of the Bejan number can also be confirmed 
from fig. 8 at the downstream locations.

Figure 10 shows the effect of Prandtl number on the total entropy generation number. It 
is noticed that the entropy production rises in the flow as the Prandtl number increases. This shows 
that the entropy production in the fluids having large Prandtl numbers is high. Figure 11 depicts 
that the heat transfer irreversibility dominates in the fluids having large Prandtl number values 
and fluid friction irreversibility dominates for those having small Prandtl number such as the air.

Figure 10. The NS against ξ for 
different values of Pr

Figure 11. Effects of Prandtl number 
on the Bejan number
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Concluding remarks

In this study, the Second law of thermodynamics is investigated in a convective heat 
transfer phenomena over a continuous horizontally moving wavy surface. A numerical scheme 
is applied to calculate accurate velocity and temperature profiles. The numerical results are 
used to calculate the expression for the entropy generation. This study reveals that, the entro-
py generation is high in upstream region and low in the downstream region. In the upstream 
region, the contribution of heat transfer and fluid friction irreversibility is distinguishable due 
to less fluctuation. However, in the downstream region the fluctuation in the Bejan number is 
high due to which dominancy of heat transfer and fluid friction irreversibility varies. Interesting 
observations regarding the Bejan number has been noted. The Bejan number fluctuates in ξ 
where the amplitude of fluctuations increases at the downstream locations. Due to this behavior 
it seems possible to have a situation when the Bejan number fluctuates in such a manner that 
the dominance of heat transfer entropy and the viscous friction entropy interchanges at differ-
ent ξ locations. The group parameters ω is noted to depreciate the dominance of heat transfer 
entropy. The observations regarding the effects of Prandtl number on the Bejan number are in 
accordance with the already observes facts available in literature.
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