EFFECTS OF DIFFERENT COATINGS ON THERMAL STRESS OF SOLAR PARABOLIC TROUGH COLLECTOR ABSORBER IN DIRECT STEAM GENERATION SYSTEMS

by

Farhad RAZMMAND and Ramin MEHDIPOUR*

Department of Mechanical Engineering, Tafresh University, Markazi, Iran

Original scientific paper

https://doi.org/10.2298/TSCI161019177R

Today, solar parabolic trough collectors are the most appropriate technologies in solar power generation due to higher efficiencies in comparison with other collector types. In this paper, a numerical heat transfer model is considered, for simulation of this equipment. The inlet heat flux to the absorber is calculated to be considered as a boundary condition for the external surface of the absorber. Temperature distribution on the absorber is obtained, by the aid of energy equilibrium modeling. Thereupon, thermal and pressure stress at absorber are analyzed in the model by thermal results and finite element methods. In this study, the direct steam generation system is used as the basis for the work. High thermal stress is a defect in direct steam generation systems. In this research thermal performance is improved and stress tolerance can be increased by using the coating on absorber surface. At the end, the most suitable coating is introduced among the variety of considered coatings types.

Key words: solar power plant, parabolic trough collector, coating, direct steam generation system, heat transfer analysis, thermal stress analysis

Introduction

In direct steam generation solar power plants, water is being used instead of oil as a fluid which in some cases leads to some fractures in the absorber. It should be noted that fractures mostly occur in the part wherein the fluid has a boiling regime. The cause of this problem is related to extreme changes in the thermal fluid in a short distance. There are several ways to strengthen and lowering the thermal stress in the absorber from those proper coating can be noted [1]. In choosing the coating material economic factors should be considered in addition to its specifics related to its application [2].

Concentrated solar power plants are one of most applied production procedures by renewable energy. Amongst, linear parabolic trough collectors are the most economical technology for absorbing solar energy [3]. Predicting thermal distribution in the solid material under non-uniform thermal source is one of attracting subjects in the context of designing the solar absorber. To estimate temperature gradient level and non-uniform effective thermal stress, extensive investigations with three perspectives are implemented:

– studying transient effects of the non-uniform thermal source on a pipe [4],
– studying effects of thermal fluid specifications, pipe design and sun beams emitting concentration over the concentrating complex [5], and

*Corresponding author, e-mail: mehdipour@tafreshu.ac.ir
experimental/numerical simulations to control thermal stresses [4-6]; most of the accomplished numerical studies in [7-10] are devoted to the analysis of heat transfer in linear parabolic trough collectors; the fluid-flow at the entrance of the considered system is single-phase while by absorbing heat, some bubbles form, and two-phase boiling flow are obtained.

Effects of some important parameters as temperature and mass-flow rate of the inlet water, tube transmittance and the properties of the absorber surface, on the collector’s energy and exergy efficiency, has been investigated by [11-14]. Zhu et al. [15] studied the performances of organic Rankine cycle using organic fluids. Their aim was to recover heat from renewable or waste energy sources.

Solar collectors usually are installed in open areas which are faced with high winds. Hachicha et al. [5] investigated CFD of wind-flow around a linear parabolic trough concentrator under real working conditions.

In electricity generating power plants by solar energy, the geometry of devices such as absorber are of great importance. To achieve certain ranges of geometrical parameters with optimized quality, Cheng et al. [16] theoretically analyzed the relations between geometrical parameters of the inverter part and system’s focal form. As well, Akbarimoosavi and Yaghoubi [17] have performed a theoretical study to discuss concentration ratio, flux density, temperature distribution, and thermal expansions effects over designing conditions. Thermal stress caused by boiling is studied by considering the thermal profile of boiling at the inner surface of the pipe [18, 19].

In the present study, the direct steam generation system is considered as the power generation system of the solar plants. Water is used as the working fluid which is proved to show better performance than oil [8]. The fluid-flow from the entrance to the outlet experiences three different regimes which are comprehensively modeled. Fluid at the pipe inlet is single phase while by flowing through the pipe and absorbing heat the temperature rises to the boiling point and some bubbles forms. At this stage, since the fluid bulk temperature is still below the saturation temperature, the formed bubbles may condense after detaching the pipe wall. This regime is called sub-cooled flow regime and may last until the bulk temperature reaches saturation condition. Then the fluid is in the two-phase boiling regime. Due to high temperature gradient throughout the absorber, considerable thermal stress at the absorber surface results. To reduce these effects and prevent fractures due to thermal stresses, three kinds of coatings, namely: titanium carbide, black chromium, and nickel, are evaluated. Common roller shaping is applied for coating the pipe. To demonstrate the connection between the coating and the pipe in the modeling the sign Tie is used in the figures. It will be shown that tangential thermal stress distribution in the absorber coated with titanium carbide is lower than two other coats.

Simulation of a linear parabolic receiver and governing approach

The general modeling approach in the present study is the energy balance of the heat collector element. The equation generally consists of direct sun’s irradiance, the optical loss of the parabolic mirror and the heat collector element, heat losses of the heat collector element as well as fluxes and heats existing in heat transfer fluid.

During a day, the sun’s irradiance on the collector and mirror complex first gets to the parabolic mirror and reflects off it and then gets concentrated in the heat collector element placed in the focal distance. On the way, a small amount of the energy with the quantity of, $q_{g,s,rad}$, is absorbed by glass the and the rest of the energy with the quantity, $q_{g,cond}$, of passes the glass after passing the width of the glass wall with heat transfer by conduction and gets to the absorber by radiation heat transfer. The quantity of the radiated energy is equated to, $q_{a,rad}$.

Some part of the absorbed energy after passing the absorber wall by conduction heat transfer with the quantity of $\dot{q}_{a,\text{cond}}$, by convection heat transfer with the quantity of $\dot{q}_{a,f,\text{conv}}$, is transferred to heat transfer fluid and in this step the remain returns to the glass by free convention heat transfer, $\dot{q}_{a,g,\text{conv}}$, and radiation heat transfer. Finally the sum of thermal energies arrived the glass by process of convection heat transfer, $\dot{q}_{g,\text{e,conv}}$, is transferred to the environment. The heat transfer circuit of these steps is in fig. 1. These steps can be seen in fig. 2.

Each heat transfer process of the absorber, as well as its related equation, will be discussed in the following sections.

Radiation heat transfer over the glass and on the surface of absorber and conduction heat transfer through the glass

As explained before, after reaching parabolic mirror, some sunlight beams are absorbed to the mirror and the rest goes to the glass and absorber complex placed at a focal distance. The quantity of the beams radiated to the glass can be achieved as the following equations, [18]:

$$\dot{q}_{g,s,\text{rad}} = \frac{2 (\dot{q}_{\text{Sun,g}} \alpha_g)}{3} \quad (1)$$

$$\dot{q}_{\text{Sun,g}} = \dot{I}_{\text{Sun}} \beta W C_r \quad (2)$$

After reaching the thermal energy to the glass by radiation, it passes through the glass wall by conduction heat transfer, eq. (3) [18]:

$$\dot{q}_{g,\text{cond}} = \frac{2 \pi k_g} {\ln \left(\frac{D_{g,\text{ex}}}{D_{g,\text{in}}} \right)} (T_{g,\text{ex}} - T_{g,\text{in}}) \quad (3)$$

At this stage, a fracture of heat reached to the glass is absorbed according to absorption factor of the glass and transfers to the absorber after passing the glass wall as eq. (4), by considering transmission ratio of glass. The amount of this thermal energy can be calculated:

$$\dot{q}_{a,s,\text{rad}} = \frac{2 (\dot{q}_{\text{Sun,a}} \gamma \alpha_a)}{3} \quad (4)$$

$$\dot{q}_{\text{Sun,a}} = \dot{I}_{\text{Sun}} \beta W C_r \quad (5)$$
Conduction heat flux in the absorber and convection heat flux from the pipe to the fluid

At this section, the heat is absorbed by the absorber and by conduction heat transfer process passes through the absorber’s wall. This heat transfer is explained by eq. (6) [18]:

\[
\dot{q}_{\text{a,cond}} = \frac{2\pi k_a \left(T_{\text{a,ex}} - T_{\text{a,in}} \right)}{\ln \left(\frac{D_{\text{a,ex}}}{D_{\text{a,in}}} \right)}
\]

(6)

Inside the pipe, the fluid is limited by the absorber’s wall as an internal flow. So the boundary-layer cannot develop freely without contact with surfaces [18]. After the heat passes the absorber’s wall by conduction, the heat is transferred to the fluid inside the pipe. This transfer is of internal convection type. The following equations describe the aforementioned heat transfer [1, 18]:

\[
\dot{q}_{\text{f,conv}} = h_f \pi D_{\text{a,in}} \left(T_{\text{a,in}} - T_m \right)
\]

(7)

\[
\text{Nu}_f = 0.023 \text{Re}^{0.8} \text{Pr}^{0.4}, \quad \text{Nu}_f = \frac{h_f D_{\text{a,in}}}{k_f}
\]

(8)

Fluid energy equations

In addition to what explained before about convection heat transfer from the absorber to the fluid, because the flow is totally surrounded by the absorber, average temperature changes and the relation between convection heat \(\dot{q}_{\text{f,conv}} \) and temperature difference between input and output can be calculated by energy balance, [18].

Fluid is flowing with constant flow rate inside the absorber and convection heat transfer occurs between its surface and the fluid. The below relations show the fluid element’s energy balance [11, 18]:

\[
\dot{q}_{\text{f,conv}} = \frac{\dot{q}_{\text{f,conv}}}{l}
\]

(9)

\[
\dot{q}_{\text{f,conv}} = \dot{m} C_p \left(T_{\text{out}} - T_{\text{in}} \right)
\]

(10)

Convection and radiation heat flux between the absorber and the glass

After reaching the absorber, according to its absorption factor, some of the thermal energy is absorbed by the pipe and by two processes of conduction and convection heat transfer passes the wall and transfers to the fluid. After absorbing this amount of heat, some is reflected in the glass by two processes of free convection and radiation heat transfer according to reflection ratio of the absorber (pipe).

For the condition that is considered in this study, heat is transferred from the pipe to the glass, so the pipe temperature is more than the glass temperature [1, 18]:

\[
\dot{q}_{\text{a-g,conv}} = h_a \pi D_{\text{a,ex}} \left(T_{\text{a,in}} - T_{\text{a,ex}} \right)
\]

(11)

\[
h_a = \frac{2k_{\text{eff}}}{D_{\text{a,ex}} \ln \left(D_{\text{g,in}} / D_{\text{g,ex}} \right)}
\]

(12)

As previously explained, after absorbing the heat in the absorber the rest of the thermal energy is transferred to the glass by two processes of heat transfer. In this section, we ex-
plain a little about the radiation heat transfer from the absorber to the glass and note the relevant relations as well. Absorber and glass surfaces are considered diffuse gray body, emitter, and reflector. As well, the glass is considered as opaque material toward thermal radiation, [18]. The following equation explains this part of heat transfer:

$$
\dot{q}_{a-g,rad} = F_{rad}\sigma D_{g,ex} \left(T_{g,ex}^4 - T_{amb}^4 \right)
$$

(13)

Convection heat flux from the glass to the surrounding environment

After two processes of heat transfer from the absorber to the glass, thermal energy passes through the glass and by convection heat transfer is transferred to the environment. At this step generally, there are free and forced convection simultaneously. In the primary modeling a calm atmosphere without wind blowing is considered, eventually, the heat flow is considered to be free convection. Relevant relations for modeling this part of heat transfer are [1, 14, 18]:

$$
\dot{q}_{g-e,conv} = h \pi D_{g,ex} \left(T_{g,ex} - T_{amb} \right)
$$

(14)

$$
\text{Nu}_e = \left\{ 0.6 + \frac{0.387 \text{Ra}^{1/6}}{1 + (0.559/Pr_e)^{9/16}} \right\}^{2/3}, \quad \text{Nu}_e = \frac{hD_{g,ex}}{k_e}
$$

(15)

Energy balance equations

First law of thermodynamics is applied as a useful tool for many heat transfer problems. In the present model two control volumes, control volume of the glass and control volume of the absorber can be considered. Relations 16 and 17, respectively, are the relations of energy conservation of the control volumes considered for the glass and the absorber:

$$
\dot{q}_{g,s.rad} + \dot{q}_{a-g,conv} + \dot{q}_{a-g,rad} - \dot{q}_{g-e,conv} = 0
$$

(16)

$$
\dot{q}_{a,s.rad} - \dot{q}_{a-g,conv} - \dot{q}_{a-f,conv} - \dot{q}_{a-g,rad} = 0
$$

(17)

The energy balance on the interface of the glass and the absorber can be written:

$$
\dot{q}_{g,cond} + \dot{q}_{a-g,conv} + \dot{q}_{a-g,rad} = 0
$$

(18)

$$
\dot{q}_{a,cond} - \dot{q}_{a-f,conv} = 0
$$

(19)

Stress equations

Thermal stress equations governing the absorber are [6]:

$$
\sigma_z = \frac{E\beta_k}{(1-v)^2} \left[\frac{2}{r_{out}^2 - r_{in}^2} \int T(r) r dr - T(r) \right]
$$

(20)

$$
\sigma_r = \frac{E\beta_k}{(1-v)^2} \left[\frac{r^2 - r_{in}^2}{r_{out}^2 - r_{in}^2} \int T(r) r dr - \int T(r) r dr \right]
$$

(21)

$$
\sigma_\theta = \frac{E\beta_k}{(1-v)^2} \left[\frac{r^2 - r_{in}^2}{r_{out}^2 - r_{in}^2} \int T(r) r dr + \int T(r) r dr - \left[T(r) \right]^2 \right]
$$

(22)
Solution algorithm

The numerical solution is performed by applying 1-D element under stable conditions. Energy balance equations, eqs. (16)-(19), is solved in a system of non-linear algebraic equations as for how the relations including temperatures and fluxes are added to the system as well and by a repeating process, with solving a system of 13 equations with 13 unknowns using coding, the unknowns are calculated [1]. In continuation, the internal temperature of the surface of the absorber is calculated, then by this actual approach, the temperature for higher control values is calculated. The system of equations performs this process by a direct linear solution and iteration method in the longitudinal direction of the pipe [1]. The calculation accuracy has been considered to be equal to 0.001 for stability and calculation is converged for each element after 17 iterations.

Therefore, the general solution algorithm is divided into two main parts, fig. 3:

- calculating the distribution of the concentrated heat transfer from the sun to the mirror and then to the glass and the absorber by coding in order to calculation of temperature distribution for external and internal surface of absorber, and
- analyzing the thermal stress by consider the temperature distribution and constraints as boundary conditions in the software of stress simulation.

![Figure 3. Solution algorithm](image)

Modeling validation

The geometry of the applied model for validation based on the reference [19] is shown in fig. 4.

In this study, the applied fluid is synthetic oil. The thermophysical properties of this fluid, as well as the parameters of the absorber, are shown in tabs. 1 and 2.
As seen in fig. 5, there is a good consistency between the obtained outlet fluid temperatures with that of [1].

About stress validation, we got aid from two different references. First results of thermal stresses in the present study are compared with that of [19]. In this investigation, the properties of the absorber and the working fluid are as shown in tab. 3.

As previously noted, in the present model, thermophysical and mechanical properties of the absorber, as well as the working fluid and geometrical specifications, are set similar to [19] to have a good comparison between the results. Distribution of the thermal stress on the inner surface of the absorber, as shown in tab. 4, are in good consistency with corresponding results reported in [19]. The deviation between the results is about 5%.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver length</td>
<td>7.8 [m]</td>
<td></td>
<td>Glass internal diameter</td>
<td>0.109 [m]</td>
<td></td>
</tr>
<tr>
<td>Collector aperture</td>
<td>5 [m]</td>
<td></td>
<td>Glass external diameter</td>
<td>0.115 [m]</td>
<td></td>
</tr>
<tr>
<td>Focal distance</td>
<td>1.84 [m]</td>
<td></td>
<td>Receiver absorbance</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>Absorber internal diameter</td>
<td>0.066 [m]</td>
<td></td>
<td>Glass transmittance</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Absorber external diameter</td>
<td>0.070 [m]</td>
<td></td>
<td>Parabola specular reflectance</td>
<td>0.93</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Laboratory parameters used in the analysis according to [1]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selective coating</td>
<td>Black chrome</td>
<td></td>
<td>Input temperature</td>
<td>375.35</td>
<td>[K]</td>
</tr>
<tr>
<td>Thermal conductivity for selective coating</td>
<td>67</td>
<td>[Wm⁻¹K⁻¹]</td>
<td>Selective fluid</td>
<td>Synthetic oil</td>
<td></td>
</tr>
<tr>
<td>Selective absorber</td>
<td>Ferritic steel (P-22)</td>
<td></td>
<td>Gravity of fluid</td>
<td>709</td>
<td>[kgm⁻³]</td>
</tr>
<tr>
<td>Thermal conductivity for selective absorber</td>
<td>33</td>
<td>[Wm⁻¹K⁻¹]</td>
<td>Thermal conductivity of fluid</td>
<td>0.078</td>
<td>[Wm⁻¹K⁻¹]</td>
</tr>
<tr>
<td>Incident solar irradiation</td>
<td>933.7</td>
<td>[Wm⁻²]</td>
<td>Viscosity of fluid</td>
<td>1.52 E -4</td>
<td>[kgs⁻¹K⁻¹]</td>
</tr>
<tr>
<td>Wind speed</td>
<td>0.03</td>
<td>[ms⁻¹]</td>
<td>Specific heat of fluid</td>
<td>2588</td>
<td>[Jkgs⁻¹K⁻¹]</td>
</tr>
<tr>
<td>Air temperature</td>
<td>294.35</td>
<td>[K]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5. Fluid temperature of the present analysis and the obtained results of [1]

Table 3. Properties of the absorber and the working fluid used in [19]

<table>
<thead>
<tr>
<th></th>
<th>Solid</th>
<th>Fluid type</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorber type</td>
<td>Steel</td>
<td>Fluid type</td>
<td>Water</td>
</tr>
<tr>
<td>Thermal conductivity [Wm⁻¹K⁻¹]</td>
<td>43</td>
<td>0.597</td>
<td></td>
</tr>
<tr>
<td>Thermal expansion [K⁻¹]</td>
<td>0.373 E -5</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Modulus of elasticity [GPa]</td>
<td>2.1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>0.3</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Density [kgm⁻³]</td>
<td>–</td>
<td>998.23</td>
<td></td>
</tr>
<tr>
<td>Specific heat [Jkgs⁻¹K⁻¹]</td>
<td>–</td>
<td>4181.8</td>
<td></td>
</tr>
<tr>
<td>Kinematic viscosity [m²s⁻¹]</td>
<td>–</td>
<td>1.006 E -6</td>
<td></td>
</tr>
</tbody>
</table>
In the reference [19] external coating over the absorber is not considered. For validation of thermal stress distribution on the surface of the absorber in the boiling heat transfer with coating conditions, reference [6] was used. In tabs. 5 and 6 thermophysical and mechanical properties of the working fluid, the absorber and the coating used in this analysis can be seen. Properties in the model are set similar to what is mentioned in [6].

![Image of Table 4](image)

Table 4. Numerical comparison of thermal stress distribution on the inner surface of the absorber in current simulation with [19]

<table>
<thead>
<tr>
<th>Pipe length</th>
<th>Result in [19] [MPa]</th>
<th>Current simulation [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>243571</td>
<td>255749.55</td>
</tr>
<tr>
<td>0.2</td>
<td>201786</td>
<td>211875.30</td>
</tr>
<tr>
<td>0.4</td>
<td>142857</td>
<td>149999.85</td>
</tr>
<tr>
<td>0.6</td>
<td>190000</td>
<td>199500.00</td>
</tr>
<tr>
<td>0.8</td>
<td>210357</td>
<td>220874.85</td>
</tr>
<tr>
<td>1.0</td>
<td>218929</td>
<td>229875.45</td>
</tr>
</tbody>
</table>

As can be seen in fig. 6 results of the present study are consistent with results of [6]. The deviation between the results is about 7%.

Boiling and superheating steps results

In this section applying three different coats of nickel, black chromium and titanium carbide in boiling and super heating steps of the model are considered, and eventually, the coating effect on the heat performance and thermal stress are studied.
At the boiling step of the model, properties of the pipe material and the fluid are as tab. 5. Thermophysical and mechanical properties of the primary coating which was considered for this model are as tab. 6. Laboratory conditions are as tab. 1 while the absorber length in this section is equal to 2 meters. Tangential stress distribution along the absorber which is obtained in this situation by considering three different coatings of nickel, black chrome, and titanium carbide is as fig. 7.

It should be noted that for numerical analysis of the boiling part in relations mentioned at section Conduction heat flux in the absorber and convection heat flux from the pipe to the fluid, we should apply the boiling heat flux relation in numerical modeling. The relation is explained below [6, 18]:

\[
\dot{q} = \mu \delta_h \frac{D_{a,in}}{\sigma} \left(\frac{g(\rho - \rho_v)}{C_p} \right)^{1/2} \left(\frac{c_p \Delta T_v}{C_v \delta_h \rho \mu} \right)
\]

\[
\Delta T_v = T_s - T_{sat}
\]

By replacing eqs. (23) and (24) instead of eqs. (7) and (8) in numerical modeling, a temperature profile results for the surface of the pipe which by applying the obtained profile in the simulation we can obtain the results of thermal stress distribution. It should be noted that due to the boiling concept and continuous heat absorption, the liquid contribution reduces and vapor phase increases. Therefore, the density decreases as gas phase increases along the pipe.

As seen from fig. 8, in nickel, black chrome and titanium carbide coatings, according to increasing the thermal conductivity coefficient for the coatings, respectively, tangential thermal stress distribution decreases with the same order along the absorber. Titanium carbide material is more suitable in comparison with other coatings.

For the post boiling flow regime, known as super-heated flow, the simulation is accomplished similarly to [1] other considered conditions are consistent with tabs. 1, 2, 6. The pipe material is P-22 steel. By putting the obtained temperature profiles for the three different coatings in the present model, thermal stress analysis is performed. In fig. 8 tangential stress distribution along the pipe obtained for the three different coatings can be seen. Temperature distribution for the outer surface of the pipe for different coatings is shown in fig. 9.
Then, by considering the mechanical properties in the stress simulation software for every three types of coating, the results of tangential stress by steam fluid along the absorber was obtained by analyzing, which the comparison of these three analyses can be seen in fig. 10. As well, for the present analysis, the results of Mises criterion was obtained too, which can be seen in fig. 11. As seen in fig. 10, tangential stress level along the absorber decreases, respectively, in the nickel, black chrome, and titanium carbide. As well it can be seen in the Mises stress distribution along the border which is cited in fig. 11 and contains a higher precision.

Conclusion

Employing water as working fluid in direct steam generation systems is more welcomed due to environmental compatibility and inflammability in comparison with oils. Besides the mentioned advantages the probabilities of fractures due to thermal stresses exist by using water as the working fluids in absorbers. In the present study effects of applying different coating layers to improve the absorber properties and consequently to reduce thermal stresses are evaluated. In this regard, a comprehensive modeling from the single phase flow at the inlet of the absorber pipe to the superheated boiling flow at the outlet is accomplished to obtain temperature distribution and accordingly thermal stress all over the absorber surface. By the performed analysis it was concluded that a lower and uniform thermal stress distribution can be obtained by increasing thermal conductivity factor of the coated absorber.

It was found that by use of the boiling flow of water as the heat transfer fluid the level of stresses is 33% lower than the situation which the used fluid was synthetic oil. As the last concluding remark, the most optimized conditions for the absorber is using the titanium carbide coating with the pipe’s material of P-22 stainless steel.

Nomenclature

\(C_r \) – ratio between mirror focal and external diameter of absorber (= \(D_c/4D_{a,ex} \))
\(C_r \) – ratio between mirror focal and external diameter of glass (= \(D_c/4D_{g,ex} \))
\(c_p \) – specific heat at constant pressure, [Jkg\(^{-1}\)K\(^{-1}\)]
\(D_c \) – diameter of mirror, [m]
\(D_{a,ex} \) or \(D_{a,in} \) – external or internal diameter of absorber, [m]
\(F_{rad} \) – fraction of black body radiation in a wavelength band
\(g \) – gravitational acceleration, [ms\(^{-2}\)]
\(\dot{m} \) – fluid-flow rate, [kgs\(^{-1}\)]

\(k_{sun} \) – radiation intensity of sun
\(k_a \) – thermal conductivity for absorber, [Wm\(^{-1}\)K\(^{-1}\)]
\(k_e \) – thermal conductivity for atmospheric air, [Wm\(^{-1}\)K\(^{-1}\)]
\(k_{eff} \) – effective thermal conductivity, [Wm\(^{-1}\)K\(^{-1}\)]
\(k_f \) – thermal conductivity for heat transfer fluid, [Wm\(^{-1}\)K\(^{-1}\)]
\(k_g \) – thermal conductivity for glass, [Wm\(^{-1}\)K\(^{-1}\)]
\(L \) – length of absorber, [m]
\(l \) – length of heat collector, [m]
Pr – Prandtl number
Re – Reynolds number (= νD/µ)
Ra – Rayleigh number (= gν(T_n−T)D^3/να)
T – temperature, [K]
\(T_{g,in}\) – temperature of external glass surface, [K]
\(T_{g,ex}\) – temperature of internal glass surface, [K]
\(T_{a,in}\) – temperature of internal absorber surface, [K]
\(T_{a,ex}\) – temperature of external absorber surface, [K]
\(T_{m}\) – fluid temperature at middle of absorber, [K]
\(T_{amb}\) – ambient temperature, [K]
v – fluid velocity, [m/s]
w – wide of mirror, [m]
Subscripts
s – surface
l – liquid
f – fluid
sat – saturation

Greek symbols
α_g – absorptance coefficient of glass
α_a – absorptance coefficient of absorber

References