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Abstract: In the present study heat and mass transfer phenomena in flow of non-

Newtonian Sisko fluid induced by peristaltic activity through a curved channel have 

been investigated numerically using an implicit finite difference scheme. The 

governing equations are formulated in terms of curvilinear coordinates with 

appropriate boundary conditions. Numerically solution is carried out under long 

wavelength and low Reynolds number assumptions. The velocity field, pressure rise 

per wavelength, stream function, temperature and concentration fields have been 

analyzed for the effects of curvature parameter, viscosity parameter and power law 

index. Additionally, the computation for heat transfer coefficient and Sherwood 

number carried out for selected thermo-physical parameters. The main results that 

are extracted out this study is that for strong shear-thinning bio-fluids (power-law 

rheological index, n < 1) the flow exhibits the boundary layer character near the 

boundary walls. Both temperature and mass concentration are found to increase with 

increasing the generalized ratio of infinite shear rate viscosity to the consistency 

index. The amplitude of heat transfer coefficient and Sherwood number is also an 

increasing function of generalized ratio of infinite shear rate viscosity to the 

consistency index. 
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1. Introduction 

Peristaltic pumping is a phenomena of fluid transport which is achieved through a progressive dynamic 

waves of contraction or expansion propagating along the walls of a distensible tube containing fluids. It is 

an inherent phenomena of numerous biological/physiological mechanism such as the male reproductive 

tract, the movement of chyme in the gastrointestinal tract and fluids from the mouth through the 

esophagus. Other industrial and physiological applications include roller and finger pumps, dialysis 

machines etc. Recently, electro osmosis-modulated peristaltic transport in micro fluids channel is 

proposed as a model for the design of lab-on-a-chip device [1, 2]. Due to wide range applications, 

mathematical modelling of peristaltic movement has received increasing interest among researchers. The 

fundamental work carried out by Latham and Shapiro et al. [3, 4] for tube and channel geometry 

theoretically evaluate the reflux and trapping phenomena associated with peristaltic mechanism under 

long wavelength and low Reynolds number assumptions. The flow was investigated in the wave frame. 

Fung and Yih [5] adopted an alternative approach based on perturbation technique to analyze the 

peristaltic flow in the fixed frame (without employing long wavelength and low Reynolds number 

approximations). The reflux phenomenon was discussed for several values of Reynolds number. 
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Peristaltic flow in a circular tube under long wavelength approximation was proposed as a model of 

intestinal flow by Barton and Raynor [6]. Later developments in the realm of peristaltic flow was made by 

several researchers. A brief overview of these attempts is presented below. 

Inertial and streamline curvature effects were integrated in the study of peristaltic transport by Jaffrin [7]. 

A comprehensive review of initial theoretical and experimental work on peristaltic transport was 

reviewed by Jaffrin and Shapiro [8]. Poiseuille flow with superimposed peristaltic flow was investigated 

by Mittra and Parsad [9] and Srivastava and Srivastava [10]. Numerical study of two-dimensional 

peristaltic flows was carried out by Brown and Hung [11], Takabatake and Ayukawa [12] and Takabatake 

et al. [13]. Non-Newtonian effect on peristaltic mechanism were described by Raju and Devanathan [14] 

using power law model. Later viscoelastic effects in peristaltic transport using a simple fluid with fading 

memory were introduced by Raju and Devanathan [15]. Peristaltic pumping of second order fluid in 

planar channel and tube was discussed by Siddiqui et al. [16] and Siddiqui and Schwarz [17]. Hayat et al. 

[18] extended the analysis of peristaltic flow for a third order fluid. Peristaltic flows of Johnson-Segalman 

and Oldroyd-B model were also investigated by Hayat et al [19, 20]. Srinivasacharya et al. [21] 

investigated the peristaltic transport of micropolar fluid. Mekheimer [22], Haroun [23], Vajravelu et al. 

[24], Tripathi et al. [25], Tripathi and Beg [26, 27], Nabil et al. [28], Tanveer et al. [29], also contributed 

to the literature on peristaltic transport in various scenarios. A variational method for optimizing 

peristaltic transport in a channel was presented by Walker and Shelley [30]. Ceniceros and Fisher [31] 

employed immersed boundary method to study peristaltic flow in a pump for all possible occlusion ratios 

and Weissenberg number in excess of 100. Böhme and Müller [32] performed an asymptotic analysis of 

axisymmetric two-dimensional peristaltic flow to investigate the influence of the aspect ratio, the 

Weissenberg number, the Deborah number and the wave shape on the pumping characteristics. Shit et al. 

[33] studied effects of applied electric field on hydro- magnetic peristaltic flow through a micro-channel. 

Abbas et al. [34] analyzed peristaltic flow of a hyperbolic tangent fluid in a non-uniform channel in the 

absence of inertial effects. The investigation of magnetohydrodynamics peristaltic blood flow of 

nanofluid in non-uniform channel is also carried out by Abbas et al. [35]. More recently, Abbas et al. [36] 

studied entropy generation in peristaltic flow of nanofluids in a non-uniform two-dimensional channel 

with compliant walls. 

The analysis carried out in above mentioned studies do not take into account the curvature effect induced 

by the geometry of the channel/ tube. The first comprehensive attempt which includes curvature effects 

on peristaltic flow was made by Sato et al. [37]. The analysis of Sato et al. [37] was extended for a non-

Newtonian third grade fluid by Ali et al. [38]. Later studies in this area were carried out by Hayat et al. 

[39], Ramanamurthy et al. [40] and Kalantari et al. [41].  

When heat and mass transfer occur simultaneously in a moving fluid, then it affect many transport 

processes present in nature and also the applications relating to science and engineering. Mass transfer 

phenomenon is vital in the diffusion process such as the nutrients diffuse out from the blood to the 

contiguous tissues. Research on bioheat transfer discusses the heat and mass transfer in organisms. 

Studies pertaining to heat/mass transfer in peristaltic flows have also been carried out by various 

researchers. This is because of numerous applications of heat/mass transfer in industrial and physiological 

process like condensation, crystallization, evaporation, etc. The literature on peristaltic flows with 
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heat/mass transfer straighter geometries is extensive but very little is said about peristalsis in heated 

curved channel. Ali et al. [42] investigated peristaltic flow in a channel with heated wall for the first time. 

Later attempts in this direction were made by Hayat et al. [43], and Hina et al. [44]. However, thus far no 

attempt is available dealing with peristaltic flow with heat and mass transfer of Sisko fluid in a curved 

channel. Sisko fluid falls in the category of generalized Newtonian fluids capable of predicting shear- 

thinning, Newtonian and shear-thickening behaviors. The model is already used by several other 

researchers in peristaltic and boundary layer flows in straighter geometries [45]. 

The rest of this paper has been designed as follows: Section 2 presents the mathematical model of 

dimensionless set of governing equations subject to appropriate boundary conditions. Section 3 provides 

detail discussion about the methodology of finite difference scheme. Section 4 demonstrate the ample 

aspects of physical results through graphs. Section 5 concludes rheological results.  

2. Mathematical formulation and rheological constitutive equations 

Let the channel of width    is coiled in a circle of radius R with center O. An incompressible Sisko fluid 

is assumed inside the channel. Let the walls of the channel are performing peristaltic motion due to 

propagation of sinusoidal waves of speed c and amplitude b. It is further assumed that both the walls of 

channel are maintained at constant temperature. The mass concentration at the both walls is also assumed 

constant. The flow geometry is explained in Fig. 1. A curvilinear coordinates (R, X), (in which R is 

oriented along radial direction and X is along the flow direction,) is employed at the center O for 

development of flow analysis. The wall surfaces is described by the expressions, 

( ) ( )1

2
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*
H X t a b X ct

p

l
= + -

å õå õ
æ öæ ö
ç ÷ç ÷

              (1) 

( ) ( )2 *
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, sin , Lower wallH X t a b X ct

p

l
=- - -

å õå õ
æ öæ ö
ç ÷ç ÷

            (2) 

where 
*l is the wavelength,   is the amplitude and t is the time.  

The fundamental equations which govern the flow are [28, 29] 

=0,ÐÖU    (Continuity Equation)              (3) 

. ,
d

dt
r = Ð

U
t    (Momentum Equation)                  (4) 

* 2
+ ,p
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c k T
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D Kd C
D C T

dt T
= Ð ÐT  (Mass Concentration Equation)             (6) 
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where 
*

, , , , , , , , andp mT C c k D K T rFt T  are the Cauchy stress tensor, temperature, mass concentration, 

specific heat at constant pressure, thermal conductivity (assumed constant), coefficient of mass 

diffusivity, thermal diffusivity, mean temperature, dissipation function and the fluid density. 

The Cauchy stress tensortis given by 

,P- +I St=                   (7) 

where P is the pressure, I  is the identity tensor and S is the extra stress tensor which for Sisko fluid model 

[45, 47] satisfies 

()
1

1 1 1

n
a b

-
= + Ô .     è ø
ê ú

S A                                             (8) 

In the above equation, 
1a  is the infinite shear-rate viscosity, 

1b  is the consistency, n is the power-law 

index andP is defined as 
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where ( ).
t

U Ug=Ð + Ð  

In view of Eq. (7), we can write Eq. (4) as 
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where ,RR RXS S  and XXS  are the components of extra stress. The boundary conditions associated with 

Eqs. (11)-(15) are 

1
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Transform our flow model from the fixed frame       to wave frame       by using transformation: 
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After making use of above transformations, the governing equations in the wave frame become 
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The following dimensionless variables are defined to render the above equations in normalized form: 
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After using these dimensionless variables apply the long wavelength and low Reynolds approximations 

then above equations in terms of stream function define by 
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Inserting Eq. (40) into Eqs. (36) and (37), we get 
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Elimination of pressure between Eqs. (35) and (43) yield  
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The boundary conditions (16) and (17) transform to  
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where         is the amplitude ratio.  

The physical quantities of interest such as pressure rise per wavelength( )pD , heat transfer coefficients at 

both the wall ( 1,2)iz i=  and Sherwood number at both the wall ( 1,2)iSh i=  are defined as [38] and [40]  
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Now, in order to solve Eqs. (38), (44) and (45) one has to rely on suitable numerical method. This is 

because of strong non-linearity manifested by these equations. An implicit finite difference technique is 

employed for the solution.  

3. Numerical solution of boundary value problem 

In this section, we describe the finite difference method (FDM) used for the solution of Eqs. (38), (44) 

and (45) subject to boundary conditions given in Eqs. (46) and (47)). This procedure is based on 

following steps: 

          (I) The first step is to construct an iterative procedure in such a way that the original nonlinear 

boundary value problem (BVP) is converted into a linear one at the (m + 1)th iterative step. For this 

particular problem, the following iterative procedure is proposed: 
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Here the index (m) shows the iterative step. It is now clear that above BVP is linear in 
( )1m
y

+
.  

           (II) At second step, we insert finite difference approximations of 
( )1m
y

+
, 

( )1m
q

+
, 

( )1m
f

+
 and their 

derivatives into Eqs. 51-53. In this way, we get a system of linear algebraic equations at each iterative 

step. 

           (III) In third step, the system of algebraic equations obtained in previous step are solved at each 

cross-section to get numerical results of 
( )1m
y

+
, 

( )1m
q

+
 and 

( )1m
f

+
. Obviously, suitable initial guesses are 

required for 
()m
y , 

()m
q  and 

()m
f  at each cross-section to start the iterative procedure. The iterative 

procedure at cross-section is carried out until a convergent solution is reached. To achieve convergent 

solution rapidly the method of successive under-relaxation is employed. In this method the values of 
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,
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y
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where t is under relaxation parameter. Usually t is chosen small for rapid convergence. In present 

computation the iterative procedure is terminated after achieving the values of ,y q and f convergent to 
810 .-  The method described above is already used in the studies carried out by Wang et al. [45] and Ali et 

al. [46]. 

4. COMPUTATIONAL RESULTS AND INTERPRETATION 

In this section, we interpret the computational results provided in Figs. 2-21 to analyze some significant 

features of the peristaltic motion such as flow characteristics, pumping characteristics, temperature 

distribution, mass concentration, and trapping phenomenon for various values of the parameters k, n, Br, 

Sr, Sc, and   . 

Figs. 2 and 3 present the redial distribution of the transverse velocity u2 for different values of    and n. 

Fig.2.shows for shear-thinning bio-fluids (n<1) an increase in    accelerate the flow. The structure of 

axial velocity is also substantially affected with the increase in     For smaller values of    the flow 

velocity is asymmetric with maximum in it appearing above 0.h=  With increasing    to 1.5 the velocity 

approximately regained its symmetry. Larger values of    represent the case when viscous effects are 

stronger than the power-law effects. In such situation, the effects of curvature on axial velocity are not 

significant. However, as    decrease in value, the effects of curvature become dominant. Fig. 3 illustrates 

the axial velocity profile for three different values of power-law index (n). It is observed that axial 
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velocity increases with increasing n. For n<1 (pesudoplastic/ shear- thinning bio-fluids), the axial velocity 

exhibits a boundary layer type character. However, such characteristic of axial velocity vanishes for 

Newtonian (n = 0) and shear-thinning / dilatant fluids. For such fluids, non-vanishing gradients in axial 

velocity occur in the whole flow span [0, h].  

The pressure rise per wavelength against flow rate is plotted in Figs. 4-6 for different values of   , n and 

k. Three distinct cases can be identified from these plots; peristaltic pumping case (  > 0, ȹ  > 0), free 

pumping case (  > 0, ȹ  = 0) and augmented pumping case (  > 0, ȹ  < 0). It is observed that for 

peristaltic pumping case, the pressure rise per wavelength increases by increasing   , n and k for a fixed 

value of  . This is consistent with observations already made for the axial velocity in Figs.2.and 3. For 

the case when ȹ  = 0 an increase in    does not significantly affect the magnitude of the flow rate  . 

However, the magnitude of   corresponding to ȹ  =0 increases with increasing power-law index and 

channel curvature. In augmented pumping case, the flow due to peristalsis is assisted by the pressure 

gradient and the magnitude of assistance increase with increasing   and n. In contrast, the assistance 

provided by pressure gradient decreases with increasing k. 

The effects of viscosity parameter (  ), and Brinkman number (Br) on the temperature distribution inside 

the channel are graphically displayed in Figs. 7 and 8 for shear thinning bio-fluid (n<1). An enhancement 

in the temperature inside the channel is observed with increase in    and Br.  

Figs 9 and 10 depict the effects of   , and Br on the heat transfer coefficient (z) at the upper wall. It is 

observed through both figures that the heat transfer coefficient varies periodically along the channel. This 

is in fact a direct consequence of the periodic nature of the peristaltic wall. Moreover, the amplitude of 

heat transfer coefficient enhances via increasing   , and Br. Figs 11ï14 depict the behavior of the mass 

concentration (◖) for different values of   , Br, Sr and Sc, respectively. These figures show that the 

concentration distribution is an increasing function of   , Br, Sr and Sc. 

The impact of several parameters such as   , Br, Sr, and Sc on the Sherwood number (Sh) at the upper 

wall is shown through Figs. 15ï18. Similar to the heat transfer coefficient, Sherwood number also 

oscillates periodically. Further, the amplitude of oscillations in Sherwood number (Sh) enhance via 

increasing   , Br, Sr, and Sc. 

An interesting feature of the peristaltic motion is known as trapping. Trapping is a phenomenon in which 

closed circulating streamlines exist at very high flow rates or for large occlusions ratios. The particular 

pattern of streamlines for three values of viscosity parameter (  ) for shear-thinning fluid are shown in 

Fig. 19. It is noticed that a circulating bolus of fluid concentrated in the upper half of the channel exists 

for   = 0.1. No significant change is observed by increasing    from 0.1 to 2, except the appearance of 

small eddies near the lower wall of the channel. The effects of power-law index (n) on streamlines pattern 

are shown in Fig. 20 for   = 0.1. Fig. 20 shows a circulating bolus of fluid concentrated in the lower part 

of the channel for shear-thinning fluid (n Ó 0.9). A small circulating eddy near the upper wall is also 

identified. The bolus shift towards the upper wall of the channel via increasing n from 0.98 to 1 i.e., 

changing the behavior of the bio-fluid from shear-thinning to Newtonian fluids. A further rise in the value 

of (power-law index) n does not effect on the circulating phenomena in the upper part of the channel. 

However, a slight decrease in the size of eddy near the low wall is noted. The influence of channel 
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curvature on trapping phenomena is illustrated through Fig. 21. A circulating bolus of fluid concentrated 

in the upper part of the channel exists for k = 2. The bolus regain its symmetric shape as kŸÐ. 

From the above discussion it is concluded that the role of k is to affect the bolus symmetry while the 

effect of n is to shift the center of circulation from lower part of channel to the upper one. 

5. CONCLUDING REMARKS 

A two-dimensional laminar incompressible flow of a Sisko fluid induced by peristalsis through a curved 

channel is investigated. The heat and mass transfer characteristics are also analyzed employing energy 

and concentration equations. Particular focus is given to effects of geometrical and rheological parameters 

of the model on flow and heat/ mass characteristics. The dimensionless governing equations are solved 

with the well-tested, robust, highly efficient, implicit finite difference numerical method. Extensive 

computations and flow visualization are presented through graphs. 

It is observed that the rheological and geometrical parameters significantly affect the peristaltic and heat/ 

mass transfer phenomena. For strong shear-thinning bio-fluids a thin boundary layer develops near the 

channel walls. Trapping phenomena is also largely altered by rheological parameters. Though viscosity 

parameter does not affect the circulating bolus in the upper wall of the channel but it creates two tiny 

eddies near the lower wall for strong shear-thinning bio-fluid. The circulating bolus shift from the upper 

half to lower half of the channel with a change in behavior of the fluid from shear-thinning to shear 

thickening. Both temperature and mass concentration profiles are strongly influenced by the involved 

parameters. Each of this physical quantity is found to increase with increasing    and Br. The heat 

transfer coefficient and Sherwood number oscillates periodically and their amplitudes are greatly 

enhanced with enhancing the numerical values of and    and Br.  

 

 

 

 

 

Fig. 1: Physical problem of peristaltic flow regime. 
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    Fig. 2: Variation of ()2u h for different values of  

   
*a with k = 3, n = 0.7, 0.4,l= and   = 1.5. 

Fig. 3: Variation of ()2u h for different values of  

n with k = 2.5, *a  = 0.1, 0.4,l= and   = 1.5. 

  
    Fig. 4: Variation of    for different values of  

   *a with n = 0.7, 0.4,l= and k = 2. 

Fig. 5: Variation of    for different values of  

n with *a = 0.1, 0.4,l= and k = 2. 

 
Fig. 6: Variation of    for different values of k with n = 0.99, *a = 0.1, and 0.4l= . 

  

  
       Fig. 7: Profile of temperature      for different values 

       of *a  with n = 0.95, Br = 0.5, 0.4,l= and k = 2. 

Fig. 8: Profile of temperature      for different values 

 of Br with n = 0.95, *a = 0.1, 0.4,l= and k = 2. 
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      Fig. 9: Variation of Heat transfer coefficient z at upper 

      wall for different values of *a with n = 0.98,Br = 0.5, 

     0.4l= and k = 2. 

Fig. 10: Variation of Heat transfer coefficient z at upper  

wall for different values of Br with *a = 0.1,n = 0.98,  

0.4,l= and k = 2. 

 
 

 

 

      Fig. 11: Variation of Mass concentration ◖ for different  

      values of *a with n = 0.9, Br = 2, Sr = 1, Sc = 1,  

      0.4,l= and k = 2. 

 

 

Fig. 12: Variation of Mass concentration ◖ for different 

values of Br with n = 0.9, *a = 0.1, Sr = 1, Sc = 1,  

0.4,l= and k = 2. 

  

     Fig. 13: Variation of Mass concentration ◖ for  

     different values of Sr with n = 0.9, *a = 0.1, Br = 2,  

     Sc = 1, 0.4,l= and k = 2. 

 

 

 

Fig. 14: Variation of Mass concentration ◖ for 

 different values of Sc  with n = 0.9, *a = 0.1,Sr = 1,  

Br = 2, 0.4,l= and k = 2. 
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Fig. 17: Variation of Sherwood Number Sh at upper  

      wall for different values of Sr with n = 0.98, *a = 0.1, 

      Br = 2, Sc = 1, 0.4,l= and k = 2. 

 

Fig. 18: Variation of Sherwood Number Sh at upper 

wall for different values of Sc with n = 0.98, *a = 0.1,   

Br = 2, Sr = 1, 0.4,l= and k = 2. 

 

 

 

 

 

 
Fig. 19: Streamlines in wave frame for (a) *a = 0.1, (b) *a = 0.98, and (c) *a = 2, for n = 0.98. The other 

parameters chosen are k = 2,   and 0.4.l=  
 

  
       

 

Fig. 15: Variation of Sherwood Number Sh at upper  

      wall for different values of *a with n = 0.9, Br = 2, 

      Sr = 1, Sc = 1, 0.4,l= and k = 2. 

 

 

Fig. 16: Variation of Sherwood Number Sh at upper  

wall for different values of Br with n = 0.98, *a = 0.1,  

Sr = 1, Sc = 1, 0.4,l= and k = 2. 
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