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In this paper, we present the numerical results for the unsteady axisymmetric 
flow and heat transfer of Carreau fluid induced by time dependent permeable 
radially stretching surface. Numerical results are demonstrated for both shear 
thinning and shear thickening fluids. The time dependent non-linear PDE of 
the considered problem are reduced into non-linear ODE with the aid of suit-
able transformations. An effective numerical technique namely bvp4c function 
in MATLAB is employed to construct the numerical solutions of the trans-
formed non-linear ODE for the velocity and temperature fields. Numerical 
computations of the local skin-friction coefficient and local Nusselt number 
are tabulated for steady and unsteady flows of shear thinning fluid as well as 
shear thickening fluid. It is worth mentioning that the magnitude of the skin 
friction coefficient and local Nusselt number for the steady flow is less than 
that for unsteady flow.
Key words: unsteady axisymmetric flow, Carreau fluid, heat transfer,  
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Introduction

It is renowned fact that the study involving stretching surface flow is a subject of great 
interest for researchers due to its vast practical applications in industrial and manufacturing pro-
cesses. These applications include design of extrusion of sheet materials, glass blowing, paper 
production, annealing of copper wires, purification of crude oil and so forth. The kinematics of 
stretching and simultaneously cooling/heating have great impact on the quality of final produc-
tion which depends on the rate of heat transfer from the surface. Sakiadis [1] seems to be the 
first amongst the researchers to initiate the work on boundary-layer flow over a solid surface and 
modeled boundary-layer equations of 2-D axisymmetric flow. A large number of investigations 
have been made by the authors on this problem from different point of view. However, a litera-
ture survey reveals that less attention has been paid regarding the axisymmetric flows induced 
by radially stretching surface. Ariel [2] studied the problem of axisymmetric flow induced by 
a radially stretching surface and computed the exact, numerical, perturbation, and asymptotic 
solutions of the problem. Again, Ariel [3] reported the impact of the partial slip on axisymmetric 
flow past a radially stretching sheet and found the exact and numerical solutions. Martins et al. [4]  
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examined the influence of inertia and shear thinning on the axisymmetric flows of Carreau 
fluid by means of Galerkin least square method and they compared their numerical results with 
the existing literature and found to be in excellent agreement. Rashidi et al. [5] carried out the 
analytical and numerical studies of transient 2-D and axisymmetric squeezing flows. Sajid et 
al. [6] studied the problem of unsteady axisymmetric flow past a radially stretching surface 
and computed the series solutions by employing the homotopy analysis method. Sahoo [7] 
analyzed the impact of partial slip on axisymmetric flow of viscoelastic fluid over a radially 
stretched surface by using the finite difference method and obtained by Broyden’s method. He 
also compared obtained numerical solutions with the solutions of Ariel [2] and found to be in 
outstanding agreement.

On the other hand, the study of non-Newtonian fluids is of paramount relevance in 
many fields of engineering and industrial applications. These fluids are encountered in many 
practical applications such as plastic sheet formation, paper production, oil recovery, petroleum 
drilling glass blowing, and food processing. Newton’s law of viscosity does not hold for such 
class of fluids and their rheological characteristics cannot be discussed in a comprehensive 
way by one constitutive relationship and they have non-linear relationship between the shear 
stress and shear rate. The generalized Newtonian fluids are those in which viscosity of the fluid 
depends on the shear rate. The power-law, Bingham, Sisko, Cross, Ellis, and Carreau models 
are the generalized Newtonian fluids. Carreau model is an important class of generalized New-
tonian fluids proposed by Carreau [8]. Different simulations involving the flow of Carreau fluid 
have been made by the authors around spheres, stretching sheet, cylinder, pipes, cavities, and 
channels. This model possesses the ability of characterizing the rheology of different polymeric 
solutions such as 1% methylcellulose lylose in glycerol solution. The study of axisymmetric 
flow of Sisko fluid over a radially stretched surface was carried out by Khan and Shahzad 
[9]. They obtained the series solution of the considered problem by using analytical technique 
namely, homotopy analysis method. Additionally, they computed the exact solutions in special 
cases for the power law index n = 0 and n = 1. Makinde et al. [10] analyzed the impact of vari-
able viscosity and thermal radiation on nanofluid flow over a stretched surface in the presence 
of convective boundary condition. They noticed that the heat transfer rate depreciates with 
nanofluids and viscosity parameters. Pantokratoras [11] conducted the comparative study of 
Blasius and Sakiadis flows of Carreau fluid. Fetecau et al. [12] presented the exact solutions for 
unidirectional flow of rate type fluids. Khan et al. [13] demonstrated a numerical study to ex-
amine the melting heat transfer in Carreau nanofluid flow over a wedge in the presence of heat 
generation/absorption. They observed that temperature and nanoparticles concentration profiles 
reduce for improving values of melting parameters. Singh and Makinde [14] considered the 
problem of mixed convection flow over a moving plate in the presence of partial slip. Recently, 
Ahmad et al. [15] carried out the analytical and numerical study of unsteady axisymmetric 
flow of power law fluid over a radially stretching surface. They found that both the analytical 
and numerical results are in good agreement. The study of stagnation point flow over a radially 
stretching heated surface was conducted by Shateyi and Makinde [16]. They noticed that the 
heat transfer rate increases for increasing values of Biot number. Vieru et al. [17] examined the 
effects of Newtonian heating and mass diffusion on free convection flow near the vertical plate. 
Makinde [18] presented computational modelling for nanofluid flow over an unsteady stretch-
ing surface in the presence of convective condition. The study of heat and mass transfer analysis 
in nanofluid flow over a convectively heated surface was conducted by Khan et al. [19]. They 
noted that suction depreciates the thermal and concentration boundary-layer thickness. Recent-
ly, Khan and Azam [20] conducted a numerical study to examine the heat and mass transfer 
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rates in Carreau nanofluid flow in the presence of magnetic field. They concluded that the local 
Nusselt and Sherwood numbers are decreasing functions of the thermophoresis parameters.

Motivated by the literature and applications, the main theme of the current investi-
gation is the numerical study of unsteady axisymmetric boundary-layer flow and heat trans-
fer characteristics of Carreau fluid induced by time dependent radially stretching surface. The 
non-linear time dependent PDE regarding Carreau rheological model are reduced to non-linear 
ODE by employing the suitable local similarity transformations. Then bvp4c routine in MAT-
LAB is adopted to construct the numerical solutions of the considered problem.

Mathematical formulation

Let us consider the unsteady axisymmet-
ric 2-D flow of an incompressible Carreau fluid 
induced by a time dependent permeable radially 
stretching sheet which is stretched in the radial 
direction with stretching velocity, Uw, propor-
tional to the distance, r, from the origin. The 
sheet is coinciding with the plane z = 0 and the 
flow occurs in the upper half plane z > 0.  For 
mathematical description, we consider the cy-
lindrical polar co-ordinate system (r, θ, z). In 
view of the rotational symmetry, all the physical 
quantities are independent of θ. Therefore, the 
azimuthal component of velocity vanishes. It is 
also assumed that the temperature of the sheet 
is Tw(r, t) and considered to be higher than the 
ambient temperature T∞(Tw > T∞).  

The constitutive equation for a Carreau model is given by [21]: 
	

1
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where µ is the apparent viscosity, µ0 and µ∞ are the zero shear and infinite shear rate viscosities, 
respectively, n is the power law index which corresponds to shear thinning for (0 < n < 1), shear 
thickening for (n  > 1), and Newtonian for n = 1, Г = 0 – the material time constant also known 
as the relaxation time, and γ – the rate of strain tensor. In the current formulation, we assumed 
that µ∞ = 0. Thus, the constitutive equation takes the form:
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The velocity and temperature fields for the unsteady 2-D axisymmetric flow are as-
sumed to be of the form:
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Under the aforesaid assumptions, the governing boundary-layer equations for the ax-
isymmetric unsteady flow along with the boundary conditions take the form:
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Figure 1. Geometry of the problem
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where u and w denote the velocity components along r- and z-directions, respectively, t, n, ρ, 
k, cp   are the time, kinematic viscosity, fluid density, thermal conductivity of the fluid, and the 
specific heat, respectively.

We assumed that the stretching velocity Uw(r, t) surface temperature Tw(r, t) and mass 
fluid velocity fw(t) are of the following form:
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where αt < 1 with positive constants α and c having dimensions reciprocal of time, W0 is a uni-
form suction/injection velocity (W0 > 0) for suction and W0 < 0 for injection).

The particular form for the mass fluid velocity, fw(t), surface temperature and stretch-
ing velocity, Uw(r, t), are chosen to employ the following suitable transformation:
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−
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−
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where Ψ is the Stokes stream function having the property u = –(1/r)(∂ Ψ/∂z), w = (1/r)(∂Ψ/∂r), 
θ – the dimensionless temperature, Re =rUw/n – the local Reynolds number and η the indepen-
dent variable, respectively. Thus the velocity components are:

	
1( ), 2 ( )
Rew wu U f w U fη η′= = − 	 (11)

In view of the previous transformations, the governing eqs. (5) and (6) along with the 
boundary conditions (7) and (8) are reduced to the following non-dimensional form:
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where prime denotes differentiation with respect to η, We = [c3Г2r2/ n(1-αt)3]1/2 is the local Weis-
senberg number, Pr = µCp /k – the Prandtl number, A = α/c – the dimensionless parameter which 
measures the unsteadiness and S = W0/2(nc)1/2 – the constant mass transfer parameter with  
S > 0 for suction and S < 0 for injection and Ec = cUw/bCp – the Eckert number.

The physical quantities of prime engineering interest are the local skin friction coeffi-
cient, Cf, and the local Nusselt number which are given:
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( )

w w
f

ww

rq
C

k T TU
τ
ρ ∞

= =
− 	 (16)

where τw and qw are the wall shear stress and wall heat flux, respectively, having the following 
expressions:
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Consequently, in view of eqs. (10) and (16), eq. (17) takes the dimensionless form:
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Numerical procedure

The current numerical computations for solving the boundary value problem usually 
require a guess for the solution. Boundary value problems are much difficult to handle than 
initial value problems and any solver may fail even with good guesses. The bvp4c function 
is an effective solver of the boundary value problems which employs a collection method for 
determining the solution of boundary value problems of the form y′ = f(x, y, p), a ≤ x ≤ b with 
boundary conditions g[y(a), y(b), p] = 0 where p denotes a vector of unknown parameters. 
The transformed non-linear ODE (12) and (13) along with boundary conditions (14) and (15) 
are solved numerically by employing the MATLAB boundary value problems solver bvp4c 
function. For this, we convert the given ODE as a system of first order ODE. As a result, the 
non-linear ODE (12) and (13) are reduced to a system of first order ODE: 
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A comprehensive discussion of this method is explained in [22].

Results and discussion

The main focus of present investigation is the study of the unsteady axisymmetric 
boundary-layer flow and heat transfer characteristics of Carreau fluid over a permeable time 
dependent radially stretching sheet. The system of non-linear ODE (10) and (11) subject to the 
boundary conditions (12) and (13) are solved numerically by an effective numerical technique 
namely bvp4c function in MATLAB. The comprehensive numerical results are computed for 
different values of the physical pertinent parameters of flow and heat transfer namely, unsteadi-
ness parameter, A, power law index, n, Prandtl number, local Weissenberg number (We), mass 
transfer parameter, S, and Eckert number. The influence of these physical parameters on the 
velocity and temperature fields is depicted graphically with comprehensive discussions. The 
variations of the local skin-friction coefficient Re1/2 Cf and the local Nusselt number Re–1/2 Nu are 
illustrated in tabular form through tabs. 1 and 2 for various values of the pertinent parameters 
for both shear thinning (0 < n < 1) and shear thickening (n > 1) fluids in the steady (A = 0) and 
unsteady (A ≠ 0) flows. Note that the transformations in eq. (10) give rise to some physical 
parameters which are not independent from spatial/temporal variables. It means that the present 
model is only a local approximation.

Table 1 shows that the magnitude of local skin friction coefficient is an increasing 
function of the mass transfer parameter, S, in shear thinning (0 < n <1) and shear thickening  
(n > 1) fluids for both the cases of steady flow (A = 0) as well as unsteady flow (A ≠ 0). It is 
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also noticed that the magnitude of local skin friction coefficient diminishes by increasing the 
values of local Weissenberg number in shear thinning fluid both for steady and unsteady flows 
but opposite trend has been noticed in shear thickening fluid. Furthermore, the magnitude of 
skin friction coefficient |Re1/2Cf | for the steady flow (A = 0) is less than that for the unsteady flow  
(A ≠ 0). Table 2 indicates that the Prandtl number and mass transfer parameter, S, enhance 
the local Nusselt number Re–1/2Nu in shear thinning (0 < n <1) and shear thickening (n > 1) 
fluids for both the cases of steady flow (A = 0) as well as unsteady flow (A ≠ 0). However, on 

Table 1. Numerical computations of the local skin friction Re1/2 Cf   

for selected values of A, S, We, and n 
 Re1/2

 Parameters  A = 0 (steady flow)  A = 0.2 (unsteady flow)
 S  We  n = 0.5  n = 1.5  n = 0.5  n = 1.5

 0.2  2.0 –1.119129 –1.614836 –1.152785 –1.676683
 0.4  – –1.347501 –1.890583 –1.377471 –1.948162
 0.6  – –1.613982 –2.186952 –1.640031 –2.240451
 0.8  – –1.913899 –2.500332 –1.936121 –2.550076
 0.2  2.0 –1.119129 –1.614836 –1.152785 –1.676683
 –  4.0 –0.950219 –1.781116 –0.977609 –1.850448
 –  6.0 –0.861721 –1.899110 –0.885892 –1.973780
 –  8.0 –0.805068 –1.991355 –0.827130 –2.070245

Table 2. Numerical computations of the local Nusselt number  Re–1/2 Nu 

for selected values of Pr, A, S, n, and We
 Re–1/2 Nu

 Parameters A = 0 (steady flow) A = 0.2 (unsteady flow)
Pr S We Ec n = 0.5 n = 1.5 n = 0.5 n = 1.5

0.72 0.2 2.0 0.2 0.92432 1.06309 0.97643 1.10823
1.0 1.18143 1.33451 1.23418 1.38254
3.0 2.59035 2.76978 2.65366 2.83765
10.0 6.10549 6.28025 6.19358 6.38878
0.72 0.2 2.0 0.2 0.92432 1.06309 0.97643 1.10823

0.4 1.05781 1.22960 1.10687 1.27112
0.6 1.21218 1.41117 1.25748 1.44913
0.8 1.38707 1.60545 1.42834 1.64011

0.72 0.2 2.0 0.2 0.92432 1.06309 0.97643 1.10823
4.0 0.85435 1.09335 0.91293 1.13618
6.0 0.80908 1.11055 0.87282 1.15204
8.0 0.77587 1.12190 0.84381 1.16254

0.72 0.2 2.0 0.0 1.00350 1.16080 1.05616 1.20581
1.0 0.60761 0.67225 0.65748 0.71791
2.0 0.21173 0.18371 0.25879 0.23000
3.0 0.18416 –0.30484 -0.13989 –0.25790
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incrementing the values of the local Weissenberg number, the local Nusselt number Re–1/2Nu 
diminishes in shear thinning fluid but enhances in shear thickening fluid for both the cases of 
steady flow (A = 0) as well as unsteady flow (A ≠ 0). Additionally, it is noted that the local 
Nusselt number Re–1/2Nu for the steady flow (A = 0) is less than that for the unsteady (A ≠ 0) 
flow. It is also clear that the local Nusselt number is a decreasing function of the Eckert number.

 Figures 2(a) and 2(b) depict the influence of unsteadiness parameter, A, on the ve-
locity field, f ′(η), and temperature field, θ(η), for both the shear thinning (0 < n <1) and shear 
thickening (n > 1) fluids. It is noted that the velocity f ′(η) and temperature θ(η) are diminishing 
functions of unsteadiness parameter, A, for both cases. It is further observed that rising val-
ues of the unsteadiness parameter, A, depreciate the momentum boundary-layer and thermal 
boundary-layer thicknesses for both the shear thinning and shear thickening fluids. Moreover, 
it is observed that the momentum boundary-layer thickness in case of shear thickening fluid is 
thicker in comparison with the shear thinning fluid. However, quite the opposite is true for the 
thermal boundary-layer thickness. 

Figures 3(a) and 3(b) are reported to illustrate the influence of mass transfer parame-
ter, S, on the velocity field f ′(η) and the temperature field θ(η) for both the shear thinning and 
shear thickening fluids. It is evident from these figures that an increase in the mass transfer 
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Figure 2. Effects of the unsteadiness parameter A on velocity f ′(η) and temperature θ (η) profiles

Figure 3. Effects of the mass transfer parameter S on velocity f ′(η) and temperature θ (η) profiles 
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parameter, S, corresponds a decrease in the velocity field f ′(η) and temperature field θ(η) in 
shear thinning and shear thickening fluids. However, the momentum boundary-layer and ther-
mal boundary-layer thicknesses decrease by uplifting the mass transfer parameter, S, in shear 
thinning and shear thickening fluids. In fact, resistance took place to the fluid flow and fluid 
velocity due to the suction. 

Figures 4(a) and 4(b) portray that the enhancement in the value of power law in-
dex, n, improves the velocity profiles f ′(η) and depresses the temperature field θ(η). Phys-
ically, enhancement in the value of power law index n helps us to diminish the resis-
tive force. It is also noticed that the momentum boundary-layer thickness increases for 
large values of power law index n and quite the opposite is true for the thermal bound-
ary-layer thickness. The influence of the local Weissenberg number on the velocity field  
f ′(η) and temperature field θ(η) is demonstrated in figs. 5(a) and 5(b) for the case of shear thin-
ning and shear thickening fluids.

From these figures, it can be seen that an elevation in the local Weissenberg number is to 
boost the velocity profiles f ′(η) and temperature profiles θ(η) in shear thinning fluid while a quite 
opposite effects are noticed for shear thickening fluid. Further, the local Weissenberg number has the 
tendency to enhance the momentum boundary-layer thickness in shear thinning fluid. 

Figure 5. Effects of the Weissenberg number on velocity f ′(η) and temperature θ (η) profiles
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Figure 4. Effects of the power law index n on velocity f ′(η) and temperature θ (η) profiles
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Figure 6 reveals the impact of the Prandtl 
number on temperature profiles of the flow for 
the shear thinning and shear thickening fluids. 
From this figure, it is observed that inflation 
in the Prandtl number lowers the temperature 
profiles and thermal boundary-layer thickness 
for both the cases of shear thinning and shear 
thickening fluids. This is because of the fact 
that enhancement in the Prandtl number cor-
responds to low thermal conductivity and con-
sequently diminishes the conduction and the 
thermal boundary-layer thickness. 

Figure 7 represents the variation of 
temperature profiles for different values of 
Eckert number. From this figure, it can be 
seen that temperature is an enhancing func-
tion of the Eckert number. 

Figure 8 indicates the flow pattern of 
stream lines which are symmetric everywhere. 

Conclusions

In the present article, we constructed the numerical solutions for the problem of unsteady 
axisymmetric boundary-layer flow and heat transfer of Carreau fluid past a time dependent 
permeable radially stretching sheet by employing the MATLAB routine bvp4c. Numerical re-
sults were computed for both shear thinning and shear thickening fluids. The significance of 
pertinent parameters namely, the unsteadiness parameter, A, mass transfer parameter, S, power 
law index, n, local Weissenberg number, We, and Prandtl number was analyzed. The main ob-
servations of the present article are summarized as follows.

yy The velocity profiles f ′ (η) and temperature profiles θ (η) were diminished with an increment 
in the unsteadiness parameter and mass transfer parameter for both shear thinning  (0 < n <1)  
and shear thickening (n > 1) fluids.
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Figure 6. Effects of the Prandtl number on 
temperature θ (η) profiles

Figure 7. Effects of the Eckert number Ec on 
temperature θ (η) profiles

Figure 8. Stream lines
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yy Enhancement in the unsteadiness parameter and the mass transfer parameter depreciated the 
momentum boundary-layer and thermal boundary-layer thicknesses for both shear thinning 
(0 < n <1) and shear thickening (n > 1) fluids.

yy Elevation in the local Weissenberg number was to boost up the velocity profiles f ′ (η) and 
momentum boundary-layer thickness for the shear thinning fluid while a quite opposite ef-
fects were noticed for shear thickening fluid.

yy Larger values of the power law index, n, improved the velocity profiles f ′ (η) and momentum 
boundary-layer thickness but depressed the temperature profiles θ (η).

yy The magnitude of local skin friction coefficient |Re1/2Cf | was increasing function of the mass 
transfer parameter in shear thinning (0 < n <1) and shear thickening (n > 1) fluids for both 
the cases of steady flow (A = 0) as well as unsteady flow (A ≠ 0).

yy The local Nusselt number Re–1/2 Nu and the magnitude of skin friction coefficient |Re1/2Cf | for 
the steady flow (A = 0) were less than that for the unsteady flow(A ≠ 0).
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