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A Mathematical model has been proposed for investigating the flow, heat and mass transfer in 

Williamson and Casson fluid flow over a stretching surface. For controlling the temperature and 

concentration fields we considered the space and temperature dependent heat source/sink and 

homogeneous-heterogeneous reactions respectively. Numerical results are carried out for this study by 

using Runge-Kutta based shooting technique. The effects of governing parameters on the flow, heat and 

mass transfer are illustrated graphically. Also computed the skin-friction coefficients for axial and 

transverse directions along with the local Nusselt number. In most of the studies, homogeneous-

heterogeneous profiles were reduced into a single concentration equation by assuming equal diffusion 

coefficients.  For the physical relevance, without any assumptions we studied the individual behavior of 

the homogeneous-heterogeneous profiles. It is found that the rate of heat and mass transfer in Casson 

fluid is significantly large while equated with the heat and mass transfer rate of Williamson fluid. 

Keywords: MHD, non-Newtonian fluid, Stretching sheet, non-uniform heat source/sink, homogeneous-  

       heterogeneous reactions. 

 

1. Introduction 

The boundary layer flow, heat and mass transfer over a stretching surface has benefitted believed 

attention due to its demand in the industrial and manufacturing processes. Such demanded applications 

are of polymer, chemical industries, controlling of cooling and heating processes and blood flows.  Due to 

this significance the innovation of the boundary layer flow past a stretching sheet was initiated by 

Sakiadis [1]. The study of flow through stretching sheet in the presence of chemical reaction place an 

important role in the chemical engineering, biomedical, pharmaceutical industries, polythene paper 

production and environmental engineering processes these were given by Ali and Al-Yousef [2]. Later on, 

the self-similarity solution of continuously stretched surfaces with decreasing velocities was discussed by 

Magyari et al. [3].  An analytical solution for MHD flow past a permeable vertical stretching surface with 

existing of chemical reaction was discussed by Chamka [4].  Raptis and Perdikis [5] analyzed the MHD 

two-dimensional viscous flow through a nonlinearly stretching sheet with existing of chemical reaction.  

The chemical reaction and heat generation effect on the flow through porous medium was illustrated by 
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Patil and Kulkarni [6]. Mixed convection on flow over a moving vertical surface in the presence of 

variable viscosity was analyzed by Ali [7]. The mass transfer analysis of MHD flow of a second grade 

fluid past a permeable stretching sheet in the presence of chemical reaction was studied by Cortell [8]. 

Past few decades heat and mass transfer in non-Newtonian fluid flows are playing a vital role 

than heat and mass transfer in Newtonian fluids due to its simplicity in nature.  There are many practical 

real time, engineering applications of non-Newtonian fluids such as crystal growing, drilling mud’s, gels, 

shampoos, powder technology, food processing, blood flow and biological applications.  There are 

various types of non-Newtonian fluids like Casson, viscoelastic, Jeffrey and Williamson fluid. There is no 

constitutive relation for these fluids so these fluids have simplicity in nature. In the present study, we 

considered the Casson fluid, it is a shear thinning liquid having an infinite viscosity at rate of shear stress 

is zero. Owing to this Raju et al. [9] analyzed an unsteady Casson fluid flow through a stretching sheet in 

the presence of variable thermal conductivity. Haq et al. [10] studied the heat transfer characteristics of a 

Casson nano fluid flow past a shrinking sheet. An unsteady Casson fluid flow past an oscillating vertical 

plate was studied analytically by Hussain et al. [11].  Raju et al. [12] investigated the mass transfer 

analysis of MHD Casson fluid flow past a permeable exponentially stretching sheet. The Casson fluid 

flow past an exponentially shrinking surface was illustrated by Nadeem et al. [13].  Most of the above 

mentioned studies are belonging to two-dimensional, steady, unsteady, exponentially stretching sheets. 

The 3D flow of non-Newtonian fluids through a stretching surface also has most applications in the civil 

engineering, solar energy, and peristalsis blood flow through a pumps etc. Nadeem et al. [14] depicted the 

3D flow of Casson nanofluid through a linear stretching surface. Couple stress fluid flow through a 

stretching sheet in the presence of Newtonian heating effect was discussed by Ramezan et al. [15]. Hayat 

et al. [16] depicted the radiation effect on 3D Jeffrey fluid flow past a stretching surface in the presence of 

variable thermal conductivity. The natural convection flow induced by a continuous stretched sheets in 

the presence of rapidly depreciating velocities Ali [17]. 

 The magnetohydrodynamic flows with non-uniform heat source/sink also plays major in the 

fields of aerodynamics, aeronautical engineering, astrophysics, space technology and environmental 

engineering etc. The Williamson fluid flow past a stretching sheet also have vital role in the field of 

plasma dynamics, blood flows, ice slurries, ice creams, paste, oil crude preparation, petroleum 

engineering sandwich processes and bio thermal engineering etc. In modern technology, the researchers 

are interested into the Williamson fluid flow through a stretching sheet due to its applications in blood 

flows; these were addressed by researchers [18-23]. Hayat et al. [24] explored the convective conditions 

on peristaltic flow with homogeneous-heterogeneous reactions. Homogeneous-heterogeneous reaction 

effect on stagnation-point flow past a stretching surface was illustrated by Bachok et al. [25]. Chatterjee 

[26] studied the steady axisymmetric Carreau fluid jet flow through an impinging surface. Viscoelastic 

fluid flow past a saturated porous medium was analyzed by Delenda et al. [27].  The researchers [31-38] 

analyzed the flow over various geometries (cone, plate and sheet) with various flow physical 

characteristics (non-uniform heat source or sink, Nano liquids and magnetic field). 

  All the above mentioned studies concentrated on 2D or 3D flows in the presence of chemical 

reaction, magnetic field and radiation. But no studies have been described yet up to the author’s 

knowledge on the flow of 3D non-Newtonian fluids over a stretching surface in the presence of non-



uniform heat source/sink and homogeneous-heterogeneous reactions. By keeping this into view in this 

study we make an attempt to analyze the heat and mass transfer behavior of the three-dimensional Casson 

and Williamson fluid flows through a stretching sheet with non-uniform heat source/sink and 

homogeneous-heterogeneous reactions. 

 

2. Flow analysis 

In this study we consider the electrically conducting Casson and Williamson fluid flows past a stretching 

sheet in the presence of magneticfield, non-uniform heat source/sink and homogeneous-heterogeneous 

reactions. The magnetic Reynolds is negligible in this study. Due to this cause we neglected the induced 

magnetic field. The mass transport was controlling by homogeneous and heterogeneous reactions. The 

flow configuration is displayed in Fig.1. The rheological model for an isotropic flow of Casson fluid 

is given by Raju and Sandeep [39]: 
1/.
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In the above equation ij ije e    and ije is the ( , )i j th component of the deformation rate,   the 

product of the component of deformation rate with itself, c is a critical value of this product 

based on the non-Newtonian model, B  is the plastic dynamic viscosity of non-Newtonian fluid, 

and yp is the yield stress of the fluid. The anonymous researchers has suggested the value of n=1. 

However, in many applications this value is n ˃1. 

Similarly, the constitutive equation for Williamson fluid model is given by (Nadeem et al. [40]) 
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Here p is the pressure I is identity vector,   is the extra stress tensor 0u and u  are the limiting 

viscosities at zero and infinite shear rate. 0   is the time constant, 1A  is the first Rivlin 

Erickson tensor and 
. is defined as     
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Here we have only considered the case for which  =0 and
. 1  . Thus, extra stress tensor 

takes the form as   
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Fig.1 Flow Configuration 

 

 

In this study we combined the Casson and Williamson and based on assumptions the governing 

boundary layer equations are given by (Haq et al. [10], Nadeem et al. [13], Raju and Sandeep [39]) 
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The corresponding boundary conditions are: 
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In the above equations  , 0   is called Williamson fluid and 0  , 0   is called Casson fluid. 

To convert the governing equations into set of nonlinear ordinary differential equations, we now 

introduce the following similarity transformation. 
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The Equations (4) and (5) are substitute into equation (1)-(3) we get newly coupled transformed nonlinear 

equation, which are given by, 
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The transformed boundary conditions are: 
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where   is Casson parameter,   is Non-Newtonian Williamson fluid parameter, M  is magneticfield 

parameter, which are given by 
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For engineering interest physical quantities are the shear stress coefficients ,fx fyC C (friction factors) are 
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3. Heat Transfer Analysis 

The energy equation with non-uniform heat source or sink is given by 
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The boundary conditions for the energy equation is given by 
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The time dependent non-uniform heat source/sink '''q
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in the above equation positive values of 
* *,A B correspond to heat generation and negative values are 

correspond to heat absorption.  We define a dimensionless parameter for temperature variable ( )  of the 

form 
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Substituting equation (13) into equations (10)-(12) we get the transformed non-dimensional temperature 

equation as given by, 
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With the transformed boundary conditions 
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The local Nusselt number is defined by: 
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4. Mass Transfer Analysis  

It is assumed that a simple homogeneous-heterogeneous reaction model exists as proposed by Chaudhary 

and Merkin [29] in the following form: 
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The respective boundary conditions are given by 

 

0

( ), ( ) at 0,

( ) , ( ) 0 as ,

A s B s

a b
D k a z D k a z z

z z

a z a b z z

 
   

 

  

      (26) 

 

Where a, b are the concentrations of the chemical species, andA BD D  are the diffusion coefficients, 

andc sk k  are the rate constants. We now introduced the similarity transformations as 
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By substituting equation (21) into equations (18) and (19) we get 
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The transformed boundary conditions are 
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whrere  Sc  is the Schmidt number, K  is the measure of strength of homogeneous reaction, 
sK  is the 

strength of heterogeneous reaction, Re /c   is the Reynolds number and  is the ratio of diffusion 

coefficients, which are represented below. 
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For physical quantities of engineering interest the local Sherwood number 
xSh is given by 
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5. Method of Solution 

To solve the present problem, Eqs. (6), (7), (14), (22) and (23) with the corresponding boundary 

conditions (Eqs. (8), (15) and (24)) are transformed into a set of first order differential equations. 

Now, Runge-Kutta and Shooting technique is applied to develop the numerical code. In this 

methodology, the above mentioned nonlinear ODEs converted to a first order differential 

equation, by using the following method: 
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with boundary conditions are 
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 Initially, the guess values of 3(0), 6(0), 8(0),y y y  are used in the simulation which are not 

given at the initial condition. In this study, the successive iteration length is 0.01. Firstly, the 

accuracy of the guess values 3(0), 6(0), 8(0)y y y
 
is verified by comparing the estimated values of  

2(0), 4(0), 5(0), 7(0)y y y y  at max   using MATLAB software ode45 solver. Finally, the Runge-



Kutta fourth order method is used to integrate the Eqs. (28)- (32) and the iteration continued until 

the agreement between the estimated values and given condition at max  .It is found that a grid 

size of 300 ensure the grid independent solution for the present case. The accuracy of the present 

numerical simulation results are validated with the previous study of Ahmad and Nazar [30] (see, 

Table 3) and found excellent agreement with their results. 

 

6. Results and Discussion 

The non-dimensional governing equations (6), (7), (14), (22) and (23) subject to the respective boundary 

conditions (8), (15) and (24) are solved numerically using Runge-Kutta based shooting technique Sandeep 

and Sulochana [28]. Results depict the influence of the dimensionless physical governing parameters on 

the flow, heat and mass transfer in Casson and Williamson fluids. For numerical computations we 

considered the non-dimensional values as 
* * 0.1,A B  1,Pr 2, 0.5sSc K K M         . 

These values are kept as common in the entire study except the varied values are shown in respective 

figures and tables. 

 Figs. 2-6 depict the effect of magneticfield on the flow velocity, temperature and concentration 

fields. It is evident that for higher values of magneticfield parameter we noticed fall in the velocity and 

homogeneous concentration field. An opposite results have been observed for temperature and 

heterogeneous field. This is due to the well-known fact that growth in the magneticfield develops the drag 

forces opposite to the flow. These forces produce the temperature near the surface. Due to this sense we 

had seen a raise in the temperature and depreciation in the velocity field. But due to the small variations in 

the temperature field we have noticed a mixed performance in the concentration profiles. It is evident to 

conclude that while compared with the Williamsons fluid, the momentum, concentration and temperature 

profiles of Casson fluid is highly influenced by the magneticfield parameter.  

 Figs.7 and 8 elucidates the effect of strength of heterogeneous parameter on concentration field. 

With an increment in the heterogeneous parameter we have perceived a fall in the homogeneous 

concentration profiles and a growth in the heterogeneous concentration field. It also observed that the 

influence of heterogeneous parameter is highly significant in Casson fluid. Because the concentration 

boundary layer thickness of a Casson fluid is gradually increases for smaller variations in the strength of 

heterogeneous parameter. Similar types of results have been observed with an increase in the strength of 

homogeneous parameter, these are displayed in Figs. 9 and 10. 

 The influence of 
* *andA B  on temperature field is displayed in Figs. 11 and 12. It is evident that 

an increase in the space-dependent and temperature-dependent heat source/sink leads to enhance the 

temperature profiles throughout the boundary layer. This agrees with the general fact that the positive 

values of 
* *andA B acts like heat generators. Generating the heat means releasing the heat energy to the 

flow, these causes to boost up the thermal boundary layer thickness. It is interesting to note that the heat 

transfer production of the Casson fluid is comparatively better than the heat transfer production of the 

Williamsons fluid due to an increase in the non-uniform heat source/sink parameters.  

 Tables 1 depict the effects of non-dimensional principal parameters on skin-friction coefficients 

for axial and transverse directions for both Williamson and Casson fluids. It noticed that a rise in the 

values of magneticfield and porosity parameters reduces the friction factors for both Williamson and 



Casson fluids. An increase in homogeneous-heterogeneous reactions does not shown significant variation 

in the friction factors. Table 2 shows the variation in the local Nusselt number due to the change in 

governing physical parameters. It is clear that an increase in the magneticfield, porosity and non-uniform 

heat source/sink parameters reduces the heat transfer rate. Table 3 illustrates the effects of non-

dimensional governing parameters on homogeneous-heterogeneous mass transfer rate. It is visible from 

that magnetic field parameter have tendency to enhances the homogeneous mass transfer rate and 

depreciates the heterogeneous mass transfer rate. We have seen a similar type of results with an increase 

in the homogeneous reaction parameter. But a raise in the heterogeneous parameter suppresses the mass 

transfer rate. Table 4 shows the validation of the present results with the existed literature. We found an 

excellent agreement of the present results with the published work.   

 
Fig.2 Velocity field for different values of 

magnetic parameter 

 
Fig.3 Velocity field for different values of 

magnetic parameter 

 
Fig.4 Temperature field for different values 

of magnetic parameter 

 
Fig.5 Concentration field for different values 

of magnetic parameter 



 
Fig.6 Concentration field for different values 

of magnetic parameter 

 
Fig.7 Concentration field for different values 

of heterogeneous parameter 

 
Fig.8 Concentration field for different values 

of heterogeneous parameter 

 
Fig.9 Concentration field for different values 

of homogeneous parameter 

 
Fig.10 Concentration field for different values 

of homogeneous parameter 

 
Fig.11 Temperature field for different values 

of non-uniform heat source/sink 



 

Fig.12 Temperature field for different values 

of non-uniform heat source/sink 

 

 

 

Table 2 Variation in local Nusselt number for different non-dimensional parameters 

    Williamsons 

Fluid 

Casson 

Fluid 

M  *A  
*B    '(0)  '(0)  

1    1.061980 1.168202 

2    1.018127 1.138109 

3    0.979309 1.111184 

 1   1.112722 1.202743 

 1.5   1.037060 1.122265 

 2   0.961398 1.041787 

  1  1.112722 1.202743 

  2  0.932339 1.052899 

  3  0.702747 0.878507 

   1 1.086327 1.184807 

   2 1.039332 1.152696 

   3 0.998170 1.124307 

 

Table 3 Variation in mass transfer rates for different non-dimensional parameters 

   Williamsons Fluid Casson Fluid 

M  Ks  K  '(0)G  '(0)H  '(0)G  '(0)H  

1   -0.383716 -0.616284 -0.434633 -0.565367 

2   -0.360601 -0.639399 -0.421729 -0.578271 

3   -0.338536 -0.661464 -0.409593 -0.590407 

 1  -0.395795 -0.604205 -0.441462 -0.558538 

 1.5  -0.454525 -0.696983 -0.515960 -0.656027 

 2  -0.492470 -0.753765 -0.564671 -0.717664 



  1 -0.408322 -0.591678 -0.448612 -0.551388 

  2 -0.336087 -0.663913 -0.404352 -0.595648 

  3 -0.205770 -0.794230 -0.341113 -0.658887 

 

Table 4 Comparison of the values of
1

1 ''(0)f


 
 

 
 when 

* * 0
s

K K A B     

M      Ahmad and Nazar 

[30] 

Present Results 

0 0   -1.0042 -1.00421 

0 0 5 -1.0954 -1.09542 

0 0.5 1 -1.7320 -1.73200 

10 0   -3.3165 -3.31653 

10 0 5 -3.6331 -3.63311 

10 0.5 1 -4.7958 -4.79582 

 

6. Conclusions 

The Casson fluid as well as Williamson fluids have specific importance in industrial as well as 

biomechanical engineering fields. The main motivation of this study due to importance of automatic 

system (Casson and Williamson fluids are small variation in viscosity) presented a numerical solution to 

analyze the heat and mass transfer production in MHD Casson and Williamson fluids past a stretching 

surface in the presence of non-uniform heat source/sink and homogeneous-heterogeneous reactions. We 

found that the heat and mass transfer production of Casson fluid is comparatively better than the heat and 

mass transfer production of Williamson fluid. Momentum boundary layer thickness of Williamson fluid is 

effectively enhances due to variation in the non-dimensional parameters. The temperature profiles of the 

casson fluid are effectively enhances due to the external heat source. Homogeneous-heterogeneous 

parameters help to modulating the concentration boundary layer thickness. This study can be useful in 

automatic manufacturing and designing processes based on the viscosity nature. 
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Nomenclature 

,u v  : Velocity components in andx y directions respectively ( /m s ) 

x
 

: Distance along the surface ( m ) 

y
 

: Distance normal to the surface ( m ) 

wq  : Wall heat flux (
2/W m ) 

pc
 

: Specific heat capacity at constant pressure ( /J KgK ) 



f
 

: Dimensionless velocities ( /m s ) 

T
 

: Temperature of the fluid ( K )  

'''q  : Non uniform heat source/sink ( /K s ) 

g  : Acceleration due to gravity (
2/m s ) 

fk  : Thermal conductivity ( /W mK ) 

f  : Diffusion coefficient (
2 /m s ) 

  : Relaxation time constant 

wu  : Velocity at the wall 

 

Greek Symbols: 

  : Similarity variable 

  : Electrical conductivity ( /S m ) 
*  : Stefan-Boltzmann constant (

2 4/W m K ) 
*k  : Mean absorption coefficient 

  : Dimensionless temperature (
0K ) 

  : Density of the fluid (
3/Kg m ) 

f
 

: Kinematic viscosity (
2 /m s ) 

  : Dynamic viscosity of the fluid ( /Kg ms ) 

  : Nanoparticle volume fraction 

  : Viscosity of the ambient fluid 

,wT T  : Temperatures of the near and far away from the surface 

,c d  : The constant parameters 

,a b  : The concentration of the chemical species 

,c sk k  : The rate constants 

,A BD D : Diffusion coefficients 

 

Dimensional less parameters: 
*A , *B   : Non-uniform heat generation/absorption coefficient 

xCf  : Skin friction coefficient in x -direction 

yCf  : Skin friction coefficient in y -direction 

xNu  : Local Nusselt number 

xSh  : Local Sherwood number 

Sc
 

: Schmidt number 

K
 

: Strength of homogeneous parameter 



sK
 

: Strength of heterogeneous parameter 


 

: Casson fluid parameter 

Rex  : Local Reynolds number 

Pr  : Prandtl number 

M  : Magnetic field parameter 

  : Non-Newtonian fluid parameter 

  : The ratio of diffusion coefficient 

G
 

: Strength of homogeneous concentration 

H
 

: Strength of heterogeneous concentration 

Subscripts: 

f  : Fluid 

w  : Condition at the wall 

  : Condition at the free stream 
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