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This paper proposes a gray-box approach to modeling and simulation of photo-
voltaic modules. The process of building a gray-box model is split into two com-
ponents (known, and unknown or partially unknown). The former is based on 
physical principles while the latter relies on functional approximator and data-
based modeling. In this paper, artificial neural networks were used to construct 
the functional approximator. Compared to the standard mathematical model of 
photovoltaic module which involves the three input variables – solar irradiance, 
ambient temperature, and wind speed- a gray-box model allows the use of addi-
tional input environmental variables, such as wind direction, atmospheric pres-
sure, and humidity. In order to improve the accuracy of the gray-box model, we 
have proposed two criteria for the classification of the daily input/output data 
whereby the former determines the season while the latter classifies days into 
sunny and cloudy. The accuracy of this model is verified on the real-life photo-
voltaic generator, by comparing with single-diode mathematical model and arti-
ficial neural networks model towards measured output power data. 

Keywords: photovoltaic module, artificial neural networks, gray-box model, 
output power, data clustering, functional approximator 

Introduction 

Due to the fast growing amount of photovoltaic (PV) systems in global electricity 

production, accurate prediction of these systems is becoming very significant. Reliable fore-

casting of PV systems in electricity production can help the grid operators maintain a better 

balance between power demand and supply. The amount of power generated by a PV system 

dominantly depends on the intensity of the incident solar irradiance. Unpredictable variations 

in PV power output may increase the operating costs of the power system and reduce the op-

erational reliability of electricity supply. 

Conventional models of PV module performance are based on physical principles. 

These models use irradiance and temperature of the module (or ambient temperature and wind 

speed) as input variables. Circuit-based PV models generally include both linear and non- 

-linear components. Series and shunt resistances describe the linear part of the equivalent cir-

cuit. Single-diode, double-diode or three-diode current-voltage (I-V) characteristics describe 

the non-linear part of the equivalent circuit [1-4].  

Most PV module manufacturers provide only a list of basic technical data measured 

at standard test conditions (STC), while only a few manufacturers provide data for nominal 
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operating cell temperature (NOCT). The performance of PV modules at a particular site under 

real operating conditions can differ dramatically from the one measured at STC and NOCT [5, 

6]. The different factors affecting PV module performance are as follows: location (longitude 

and latitude), environmental factors (solar irradiance, temperature, wind, humidity, atmos-

pheric pressure, pollution, dust, rain, etc.), inclination angle, ways of cooling, and the type of 

PV technology used [7, 8]. Thus, the accuracy of a conventional model of PV module is lim-

ited. Obviously, the output power of PV module is not only a function of irradiance and tem-

perature but also of a number of environmental factors, therefore, determining physical prin-

ciples based on a model involving these interdependent factors is very difficult [7-9].  

An alternative approach is using a functional approximator artificial neural networks 

(ANN) [2, 10-15], genetic algorithm [16], neuro-fuzzy inference system [13], and particle 

swarm optimization [17, 18]) to simulate PV module. The input and output layer of functional 

approximator consists of weather data (historically recorded) and measured output power of 

PV module, respectively. Various input parameters, important to the operation of PV module, 

are used in these studies.  

In [10] the authors proposed ANN based model to estimate the produced power of a 

Si-polycrystalline PV module, using the solar irradiance and temperature as an input. The 

ANN approach is used to predict solar cell short-circuit current, open-circuit voltage and thus 

set current-voltage characteristics of the PV generator (for an example, see [2, 11]). Also, 

ANN are used for PV output power and solar irradiance forecasting [12-14], with the es-

teemed influence of input parameters, such as humidity, atmospheric pressure, wind speed, 

etc. The results obtained with the functional approximator are generally better than those ob-

tained by a conventional model based on physical principles. 

In this paper, we propose a gray-box approach to improve the prediction accuracy of 

a conventional model of PV module. In gray-box modeling, the system model is partitioned 

into two components: known, and unknown or partially unknown. The former relies on physi-

cal principles, whereas the latter is modeled by using a functional approximator. One of the 

pioneer works in the application of grey-box modeling concept to engineering problems was 

reported in [19]. The use of grey-box approach for modeling PV power system via particle 

swarm optimization has been only recently proposed by [17, 18]. Particle swarm optimization 

was chosen to optimize the parameters in the clear-box model and to find the best coefficients 

in the grey-box model. 

Our approach for PV module modeling uses a conventional single-diode model as a 

clear-box model. The three main input variables (solar irradiance, ambient temperature, and 

wind speed) are used as the inputs of the clear-box model. The output of the clear-box model 

and the three additional environmental variables (wind direction, atmospheric pressure, and 

humidity) are used as inputs of ANN based black-box model in order to improve the accuracy 

of the conventional model to predict the output power of the PV module. The input/output 

data used for training and validation of gray-box model were collected from January 1, 2014 

to December 31, 2014. To examine the influence of the type of day on the accuracy of the 

gray-box model we proposed two criteria for the classification of the daily input/output data: 

season-based criterion (winter, summer and spring/autumn) and the additional criterion for 

classifying days into sunny and cloudy. Therefore, three gray-box cases were investigated. In 

the first case, we used all training input/output data for training one ANN. We used in-

put/output data classified by season for training three ANN in the second case and in-

put/output data classified by the both proposed criteria for training six ANN in the third one.  
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Mathematical modeling 

Single-diode five parameter PV generator model 

The PV generators are typically formed by combinations of Npg parallel and Nsg se-

ries connections of PV modules, where PV generator series and parallel resistance are, respec-

tively: Rsg = (Nsg/Npg)Rsm, Rpg = (Npg/Nsg)Rpm. A PV module typically consists of Ns cells in 

series [1, 3, 20, 21]. Please note that in order to reduce negative impacts of shading and elimi-

nate the hot-spot phenomena accordingly, it is common to include one bypass diode per up-to 

20 series-connected cells. 

The basic current-voltage (I-V) characteristics of the PV generator can be described 

[21]: 
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where Ig [A] and Vg [V] are current and voltage of PV generator, respectively, Iscm [A] and 

Vocm [V]  the short-circuit current and open-circuit voltage of the module, respectively, n  

the diode coefficient (for ideal diode is n = 1), VT = kBTm/q [V]  the thermal voltage, kB  the 

Boltzmann’s constant (kB = 1.38062210
23

J/K), Tm [K]  the temperature of the module, q  

the quantity of electric charge (q = 1.6010
19

 C), and Rsm [] and Rpm []  the series and 

parallel resistance of the module, respectively. 

The PV module temperature can be calculated by solar irradiance incident on a tilted 

PV module surface, ambient temperature and wind speed [22]: 

 
G,tilt

m a wstc
3.12 0.25 0.899 1.3 273

G
T T v

G
      (2) 

where GG,tilt [W/m
2
] is the solar irradiance incident on a tilted PV module surface, G

stc
 [W/m

2
] 

– the solar irradiance at STC, Ta [C] – the ambient temperature, and vw [ms
–1

] – the wind 

speed. 

Manufacturers of PV modules usually provide basic information, measured at STC 

and NOCT, i. e., the stc
scmI , stc

ocmV , the temperature coefficient of the short-circuit current α1 the 

temperature coefficient of the open-circuit voltage αV, the voltage NOCT
MPPV  and current NOCT

MPPI  

at maximum power point (MPP), and the maximum power output NOCT
maxP . The values of Iscm 

and Vocm are provided with reference to STC temperature of the module stc
mT  = 25 C and STC 

solar irradiance G
stc

 = 1000 W/m
2
. For details see [3, 20, 23]. For constant solar irradiance 

and module temperature, MPP represents an operating point on the V-I characteristics, see eq. 

(1), where maximum output power is achieved by: 

 
max MPP MPPP V I  (3) 

The MPP varies among different combinations of atmospheric conditions. A maxi-

mum power point tracking (MPPT) algorithm adjusts the voltage at which a PV module gen-

erates its maximum output power at all times and under varying atmospheric conditions. 

Solar irradiance 

The amount of solar irradiance incident on a tilted PV module depends on the angle 

between the PV module and the Sun position, as shown in fig. 1.  
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The total (also called global) 

irradiance on a horizontal surface 

GG,hor represents the sum of the 

direct irradiance Gdir,hor and the 

diffuse irradiance Gdiff,hor on the 

horizontal surface: 

 

Diffuse irradiance in a given 

location can be calculated through 

the diffuse transposition factor by 

several models (i. e. Perez or Hay-

Davies model). These models 

depend on complex atmospheric properties. Given that the data for such models were not 

available for the given location of the PV system, the diffuse irradiance Gdiff,hor on the hori-

zontal surface was determined based on known irradiance on a horizontal surface GG,hor by 

empirical formulae [24]: 
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where kT = (GG,hor/G0sinγs) is the clearness index, G0 – the extraterrestrial irradiance (G0 = 

= 1361 W/m
2
) [25], and γs – the angle of solar altitude (Sun height). 

The total irradiance on a tilted surface of PV module GG,tilt is: 

 
G,tilt dir,tilt diff,tilt refl,tiltG G G G    (6) 

The direct irradiance, dir,tilt,G  the diffuse irradiance, diff,tilt,G  and the ground reflect-

ed irradiance, refl,tilt,G  on the tilted surface can be calculated from the irradiance on the hori-

zontal surface as [26, 27]: 

 
t

dir,tilt dir,hor
S

cos

sin
G G




  (7) 

 

     2 3 3
diff,tilt diff,hor t S t t0.5 1 cos cos 1 sin 0.5 1 cosG G F F       

 
 (8) 

 
 refl,tilt G,hor t0.5 1 cosG G A    (9) 

where the angle between the vector s  in the direction of the Sun and the normal vector n  

perpendicular to the surface is: 

  t S t S t S tarccos sin cos cos sin cos            (10) 

where F = 1 – (Gdir,hor/GG,hor)
2
, γ – the tilt angle of PV module, A– the albedo (reflection coef-

ficient), αs – the solar azimuth angle (relative to north, in the eastward direction), and αt – the 

PV module orientation angle (relative to north, in the eastward direction). 

 
G,hor dir,hor diff,horG G G   (4) 

Figure 1. Defining angles of PV module 
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The angles which define Sun position (γs, αs) and the angle between the Sun and 

normal on tilted surface of PV module, θt, depend on time and geographic data for the loca-

tion of the analyzed PV module. Calculating total irradiance on a tilted surface of PV module 

at any given time necessitates recalculating respective angles. 

Gray-box modeling 

Overall structure of the proposed model 

Besides the material performance (cell semiconductor material and glazing material) 

and solar irradiance, the proposed physical principles-based model of PV generator uses mod-

ule temperature as input data. The module temperature is calculated as a function of solar ir-

radiance incident on a tilted PV module surface, ambient temperature and wind speed, see 

eq. (2). The analysis of the simultaneous effect of other weather variables, such as wind direc-

tion, atmospheric pressure, humidity, etc., is very complex [7], therefore, physical principles-

based model which obtains the actual module temperature and output power from the previ-

ously mentioned ambient data is not available.  

In order to solve this problem, this paper proposes a gray-box approach that com-

bines physical principles (denoted as Clear-box model) and simplicity of functional approxi-

mator (denoted as Black-box model), as shown in fig. 2. 

The Clear-box model is a single-diode 

mathematical model of PV generator (see 

section Mathematical modeling), while the 

Black-box model is a 3-layer feed forward 

artificial neural network (FF ANN) with 

backpropagation training algorithm. Clear-
box model of PV module requires three 

input variables: irradiance, GG,hor, ambient 

temperature, Ta, and wind speed, vw. Gray-

box model allows the use of additional 

input weather variables: wind direction, 

dirw, humidity, RH, and atmospheric pres-

sure, Pa, whereby all the inputs can be 

easily measured at a real weather station. 

The indices 'c' and 'g' (fig. 2) denote the clear-box model and gray-box model maximum out-

put power of PV generator, respectively. 

The population of training sets used to train Gray-box model is prepared as follows. 

Matrices of measured time-dependent input (weather variables) and output (maximum output 

power of PV generator) data are, respectively: 
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where J is the number of time samples for ANN training (number of rows in input/output 

training matrices). 

Figure 2. Gray-box model of PV generator 
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In the proposed PV generator model a set of pre-processed input data (fig. 2) is used 

to train ANN based Black-box model. Input patterns for ANN are populated by measured 

weather data and active power calculated by physical principles-based PV generator model 

(output of Clear-box model): 
 

black-box black
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max,c w a

m
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I t O t O t  (12) 

The ANN is trained using the Levenberg-Marquardt backpropagation algorithm 

[28]. A standard approach is to normalize all time-dependent input and output vectors to the 

range [0, 1]. Following the application of each input, the ANN computes its output which is 

subsequently compared with the target output to produce an error.  

Clustering of weather data 

In order to improve the accuracy of the proposed Gray-box model of PV generator, 

the measured time-dependent input/output data should be classified into clusters. The goal is 

to group days of the year in such a manner that they contain the most similar weather condi-

tions. Different methods for classification of typical meteorological days have been proposed 

in a number of recent works [29]. In [10] the authors used annual average solar irradiance on 

a horizontal surface to classify days into sunny and cloudy. Days with irradiance higher than 

annual average solar irradiance are considered as sunny days.  

In this paper we propose grouping the meteorological data based on two criteria. The 

first one groups data into three calendar-based seasons – winter (denoted as index, w), sum-

mer (denoted as index, s), and spring/autumn (denoted as index, s/a). This criterion grouped 

days of the year with a similar tilt of the Earth's rotational axis and the length of days. For 

each season, maximum value of average daily total irradiance was calculated on a horizontal 

surface: 

 

        
ad,max ad

G,hor w s,s/a w s,s/a w s,s/aG,hor,w s,s/a
max ( ) , 1,2,...,G G i i n   (13) 
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 (14) 

where 

 
ad
G,hor w s,s/aG i 

 
 

is the average daily total irradiance on a horizontal surface, nw, ns, ns/a  the number of days in 

season, respectively, and J[iw(s,s/a)] – the number of time samples in one day. 

Previously calculated values of irradiance (
ad,max
G,hor,w ,G

ad,max
G,hor,s ,G  and 

ad,max
G,hor,s/aG ) define 

the sunniest day of the each season.  

The second criterion classifies the days of the season into sunny and cloudy. Days of 

the season (sunny and mostly sunny) fulfilling the condition ad ad,max
G,hor w(s,s/a) G,hor,w(s,s/a)( ) 0.5G i G  
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are classified as sunny. All other days are classified as cloudy. In addition, all time-dependent 

input/output data are clustered using the proposed criteria. Flow-chart of clustering input and 

output time series data is shown in fig. 3.  

Note that independent Gray-box model corresponds to each cluster of measured 

time-dependent input and output data. In Operation phase, the additional vector of input data 

I
meas

 is classified into one of the clusters. 

Evaluation criteria 

To evaluate the proposed Gray-box model, three different standard statistical 

measures were used: the relative root means square error (RMSE), relative mean bias error 

(MBE), and correlation coefficient, . The RMSE is a measure of the average spread of the 

errors. The RMSE [%] were calculated using the following equation: 

 

   

 

2
PV PV
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1
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where PV
pP , PV

measP are predicted and measured value of maximum output power, respectively, 

and K  the number of test time samples. 

The MBE represents the average deviation of the predicted values from the meas-

ured values. Also, MBE [%] indicates the average amount of over- or under-estimation, given: 
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   (16) 

The correlation coefficient,  [%], is a way to measure the strength and the direction 

of the relationship between the predicted and measured values, expressed: 

Figure 3. Flowchart of clustering input and output time series data 
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where PV
pP , PV

measP  are the mean value of PV
pP  and PV

measP , respectively. 

The range of correlation coefficient is such that –1 ≤ ρ ≤ +1. A positive correlation 

coefficient close to +1 indicates a strong positive linear relationship between the predicted 

and the measured values. 

Results and discussion 

The proposed Gray-box model was tested on a 5 kWp PV generator with 20 mod-

ules installed on the roof of Technical School in city of Cacak, Serbia. All PV modules are 

set in the southeast direction (t = −80) with tilt angles of γt = 35. The grid-connected PV 

generator system is equipped with an MPPT unit to obtain the maximum power. The pa-

rameters of PV modules under STC are given by manufacturers (Luxor Solar GmbH, Ger-

many): stc
scm 8.59 AI  , stc

ocm 37.31 VV  , I = 0.05%/C, V = −0.32%/C, Rsm = 0.02 , and 

Rpm = 19.50 . 

Data-acquisition system is used to collect output power of the installed PV gen-

erator on the AC side. The weather data are obtained from an automatic weather station 

near the location of PV generator. Both electrical and meteorological data are updated 

every 10 minutes. Data were collected for the period from January 1, 2014 to December 

31, 2014. The solar position is calculated from time and geographic data for the location 

of the analyzed PV generator (latitude N4353'40'', longitude E2020'32'', and height of 

300 m above sea level). 

About seventy percent of the input/output data in each season is used for training: win-

ter (January 1-February 28), summer (June 1-July 31), and spring/autumn (March 1-April 30, 

September 1 - October 30). The remaining data are used to validate the Gray-box model: winter 

(December 1-31), summer (August 1-31), and spring/autumn (May 1-31, November 1-30).  

The accuracy of the Gray-box model for predicting the maximum output power of 

PV generator is compared with that from the Clear-box model only and neural network only 

(denoted as FF ANN model). The Clear-box model has three input variables (GG,hor, Ta, and 

vw) as explained in the section Mathematical modeling. In FF ANN model six input variables 

(GG,tilt, Ta, vw, dirw, RH, and Pa) were used for ANN training. Note GG,tilt is calculated from 

GG,hor using eqs. (6)-(10). Figure 2 shows ANN which is designed for Gray-box model and has 

four input vectors eq. (12). The chosen number of neurons in the hidden layer of ANN was 20 

and the chosen number of training cycles was 1000. This is a tradeoff between the complexity 

of a model and its predictive accuracy. 

In order to examine the effect of classifying time-dependent input/output data into 

clusters, we proposed three cases: 

– In the Training phase all training input/output data are used for training one ANN (denoted 

as Case 1). 
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– In the Training phase training, input/output data are classified by one criterion, based on the 

season (winter, summer and spring/autumn) and by methodology defined in the section 

Clustering of weather data. A particular ANN (denoted as Case 2) was created for each season. 

– In the Training phase, each day is classified based on the season (winter, spring/autumn, 

and summer). In addition, the second criterion classifies the days as sunny and cloudy in six 

clusters, by the methodology defined in the section Clustering of weather data. The six sep-

arate ANN are trained for each cluster (denoted as Case 3). 

The proposed method of seasonal clustering, Case 2 allows calculation of PV maxi-

mum output power in real-time. However, additional criterion which classifies the days of the 

season into sunny and cloudy, Case 3, requires ad
G,horG , eq. (14), which can be calculated after 

the end of the day. The alternative way is to forecast ad
G,horG  using numerical weather predic-

tion models [10], which is out of the scope of our paper. 

After the ANN were trained, we analyzed the prediction errors by comparing the re-

sults obtained by Gray-box model with those obtained by other models. This was done on 

validation data set (denoted as Validation phase). In Case 1, in Validation phase all test sam-

ples (in all seasons) were used for the calculation of RMSE, MBE, and . The error statistics 

of the Gray-box model FF ANN model, and Clear-box model, regarding the Case 1, are shown 

in tab. 1. 

The RMSE results show that Clear-box model performed better than Clear-box and 

FF ANN models with respect to the prediction of the maximum output power of PV generator. 

In Gray-box model, MBE values show slight underestimation in the maximum output power 

of PV generator. The MBE rate is high in Clear-box model, especially in the first and the last 

hour of the solar day (from sunrise to sunset). If we neglect first and last hour of the solar day, 

MBE rate of Clear-box model is reduced from −4.15% to −1.73%, which indicates that the 

Gray-box model and FF ANN model are more reliable than the Clear-box model at predicting 

PV generator maximum output power under poor sunlight conditions.  

As shown in tab. 1, the results for correlation coefficient in different models show 

similar values, indicating a strong positive correlation between the predicted and the measured 

values of PV generator maximum output power. 

Figure 4 shows a sample of PV generator maximum output power prediction results 

(Validation phase) for Case 1. The results are for cloudy spring day on May 6, 2014. 

For Case 3, in the Training phase, each day was classified as sunny or cloudy within 

a season by methodology defined in the section Clustering of weather data, as shown in fig. 

5. Note, the criterion for classifying days into sunny or cloudy, ad,max
G,hor,w(s,s/a)0.5G , is denoted by 

a horizontal solid line in fig. 5. 

For the location of the analyzed PV generator, the annual average solar irradiance on 

a horizontal surface in 2014 was 225 W/m
2
 per day. The obtained value is denoted as a hori-

zontal dashed line in fig. 5. If we apply the criterion defined according to [10] almost all win-

ter days can be classified as cloudy.  

Table 1. Statistics error of prediction results (Validation phase) for Case 1 

 RMSE [%] MBE [%]  [%] 

Clear-box model 6.19 −4.15 99.74 

FF ANN model 5.96 −1.87 99.56 

Gray-box model 4.83 −1.04 99.85 
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Figure 5 shows a significant impact of days classification. In this paper, the pro-

posed approach classifies days under more realistic assumptions. For example, the sunniest 

winter day has a much lower value of maximum average daily total irradiance compared to 

the sunniest summer day. 

In [30], the impact of wind direction on the convective heat transfer from a roof-

mounted flat plate solar collector was analyzed. It was pointed out that the change in wind 

direction led to a slight but distinct variation in convective heat transfer process, particularly 

at higher wind speed when the plate surface was on the leeward side of the building. To inves-

tigate the influence of wind direction on the maximum output power of PV generator, we 

compared the results obtained for the two scenarios: 

The ANN (for both Case 2 and Case 3) were trained and validated with all the input 

data (denoted as Complete input data scenario); 

Figure 4. Sample of prediction results (Validation phase) and 
comparison with measurements for Case 1 

(for colour image see journal web site) 

Figure 5. Sunny/cloudy classification of days within season (in Training phase) 
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In the Training and Validation phase of the ANN (for both Case 2 and Case 3) wind 

direction data is omitted (denoted as Omitted wind direction scenario). 

The influence of clustering input/output data (Case 2 and Case 3) on PV generator 

maximum output power for both proposed scenarios is shown in the tab. 2. 

It can be observed that the clustering of input/output data by season (Case 2) signifi-

cantly affects the results. In Case 2, RMSE and MBE of the Gray-box model were significantly 

less, compared to the Clear-box model and FF ANN model, tab. 2. Additional criteria which 

classify days into sunny or cloudy (Case 3) lead to further decrease in RMSE and MBE.  

The results shown in tab. 2 show that wind direction has a negligible effect on 

the performance of the PV generator maximum output power, although it also may add 

noise to the model. A possible reason for such error behavior can be the minor impact of 

wind direction on convective heat transfer process at lower wind speed. The average 

measured wind speed for winter, summer and spring/autumn season was 0.6 m/s, 0.9 m/s , 

and 1.1 m/s, respectively. 

Furthermore, the obtained correlation coefficient values, , are almost the same as 

the ones previously obtained in Case 2. 

Table 2. Seasonal statistics error of prediction results (Validation phase) for different models and 
differently classified input/output data 

Classification Clear-box model FF ANN model Gray-box model 

Scenario Season Case Day 
RMSE 

[%] 
MBE 
[%] 

 
[%] 

RMSE 
[%] 

MBE 
[%] 

 
[%] 

RMSE 
[%] 

MBE 
[%] 

 
[%] 

C
o

m
p

le
te

 i
n
p

u
t 

d
at

a 

Winter 

Case 2 All 7.02 −5.54 99.71 5.75 −2.81 99.67 4.21 −1.59 99.87 

Case 3 
Sunny 4.99 −4.74 99.78 4.91 −2.47 99.72 3.59 0.21 99.86 

Cloudy 7.97 −6.23 99.61 5.37 −2.17 99.55 3.71 −1.22 99.81 

Summe
r 

Case 2 All 4.34 −2.57 99.85 3.60 2.08 99.93 2.64 0.81 99.90 

Case 3 
Sunny 4.06 −2.36 99.85 3.51 1.15 99.17 2.27 0.73 99.91 

Cloudy 4.87 −3.30 99.81 3.19 −1.68 99.73 2.59 0.23 99.82 

Spring/ 
autumn 

Case 2 All 6.17 −4.04 99.82 3.36 2.88 99.86 3.18 −0.45 99.88 

Case 3 
Sunny 4.83 −4.01 99.88 3.26 1.11 99.85 2.81 −0.11 99.89 

Cloudy 7.10 −4.08 99.64 3.27 1.22 99.48 3.06 −0.37 99.87 

O
m

it
te

d
 w

in
d
 d

ir
ec

ti
o

n
 Winter 

Case 2 All / / / 5.96 −2.83 99.41 4.69 −2.16 99.65 

Case 3 
Sunny / / / 5.60 −1.69 98.75 3.40 −1.05 99.46 

Cloudy / / / 5.34 −2.37 98.84 4.09 −2.15 99.63 

Summe
r 

Case 2 All / / / 3.22 1.51 99.77 2.51 1.46 99.84 

Case 3 
Sunny / / / 3.19 1.97 99.75 2.23 0.33 99.83 

Cloudy / / / 3.10 −1.80 99.77 2.36 −1.02 99.78 

Spring/ 
autumn 

Case 2 All / / / 3.32 2.42 99.83 3.02 −0.28 99.87 

Case 3 
Sunny / / / 3.08 −1.67 99.61 2.65 −0.15 99.89 

Cloudy / / / 3.15 1.21 99.35 2.48 −0.24 99.85 
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Figure 6 shows sunny/cloudy 

classification of summer days in Val-
idation phase. The criterion for clas-

sifying days into sunny or cloudy is 

obtained from the Training phase, 

( ad,max
G,hor,s0.5 205G  W/m

2
 per day, see 

fig. 5b) and denoted as a horizontal 

solid line in fig. 6. 

The characteristically samples of 

PV generator maximum output pow-

er prediction results (Validation 
phase) obtained using Gray-box 
model which was trained with differ-

ently classified input/output data are 

shown in fig. 7. The given results include two summer days, classified as sunny, denoted as 

dark blue bar in fig. 6: August 24, 2014, mostly sunny and August 30, 2014, the sunniest 

day of the month. 

The daily statistics error for Gray-box model which was trained with differently 

classified input/output data on PV generator maximum output power is shown in tab. 3. 

The results presented in the tab. 3 suggest that the predicted and measured values for 

Case 2 and Case 3 are in better agreement, compared with non-classified input/output data 

(Case1). Also, RMSE and MBE for the partially sunny day are higher than for the sunniest day 

Table 3. Daily statistics error of prediction results (Validation phase) for 

Gray-box model trained with differently classified input/output data 

 Case 1 Case 2 Case 3' 

Day 
RMSE 

[%] 
MBE 
[%] 

 
[%] 

RMSE 
[%] 

MBE 
[%] 

 
[%] 

RMSE 
[%] 

MBE 
[%] 

 
[%] 

August 24, 2014. 3.94 0.71 99.89 3.26 −0.44 99.87 2.93 0.08 99.87 

August 30, 2014. 3.43 −0.55 99.94 2.33 0.15 99.93 2.06 −0.05 99.93 

Figure 6. Sunny/cloudy classification of summer days in 

Validation phase 

Figure 7. Samples of prediction results (Validation phase) and comparison with measurements for 

Gray-box model trained with differently classified input/output data 
(for colour image see journal web site)  
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of the month. For each case analyzed separately, the RMSE results are in the range of less than 

1%. These results, as well as their comparison with results for seasonal RMSE shown in tab. 2 

(marked in tabs. 2 and 3), indicate that the errors of the predicted PV generator maximum 

output power are within an acceptable range for both analyzed days. 

Conclusions 

A new approach for predicting output power of PV module has been presented. The 

proposed model consists of the physical principles-based model and ANN-based functional 

approximator. The convenience of this model is that the functional approximator part would 

allow using additional input environmental variables. The test results demonstrated that the 

gray-box model exceeds the accuracy of both mathematical and ANN model. 

In addition, the two criteria for the classification of the daily input/output data are 

used to improve the accuracy of gray-box model: season-based criterion and the one classify-

ing days into sunny and cloudy. The validation of the classification methods is carried out by 

seasonal analysis using the standard statistical measures: RMSE, MBE, and correlation coeffi-

cient. The obtained results show that gray-box model combined with both classification 

methods helps to determine the output power of PV module more accurately. 

The application of the proposed gray-box model can be significant for increasing 

profit by appropriate construction of solar energy systems suitable to the climate of a particu-

lar site. 
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