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In this work, we study the liquid-solid interface dynamics for large time 

intervals on a one dimensional sample, with homogeneous Neumann 

boundary conditions. In this kind of boundary value problem, we are able 

to make new predictions about the interface position by using conservation 

of energy. These predictions are confirmed through the heat balance 

integral method of Goodman and a generalized non-classical finite 

difference scheme. Since Neumann boundary conditions imply that the 

specimen is thermally isolated, through well stablished thermodynamics, 

we show that the interface behavior is not parabolic, and some examples 

are built with a novel interface dynamics that is not found in the literature. 

Also, it is shown that, on a Neumann boundary value problem, the position 

of the interface at thermodynamic equilibrium depends entirely on the 

initial temperature profile. The prediction of the interface position for large 

time values makes possible to fine tune the numerical methods, and given 

that energy conservation demands highly precise solutions, we found that 

it was necessary to develop a general non-classical finite difference scheme 

where a non-homogeneous moving mesh is considered. Numerical 

examples are shown to test these predictions and finally, we study the phase 

transition on a thermally isolated sample with a liquid and a solid phase in 

Aluminum. 
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1. Introduction 

A two phase Stefan problem is a moving boundary problem where a solution to the diffusion 

equations in each phase is desired, and the motion of the interface is unknown. In this class of 

problems, the motion of the interface demands the use of numerical methods to find an approximate 

solution, due to the non linearity of the problem introduced by the phase transition. When solving the 

Stefan problem on a finite bar, if the system is thermally isolated, the interface moves according to 

conservation of energy. For example, when the system reaches thermodynamic equilibrium, the 

interface stops moving because all the internal energy has been transferred to melt the solid. This 

happens for long values of time, where the interface approaches asymptotically to a given position 

that depends on the energy, which is an input to the system, through the initial temperature profile.  

Most authors, study the behavior of the interface for small time values, finding solutions by using 

finite difference methods [1, 2, 3, 4, 5, 6, 7, 8] or semianalytical approaches [9, 10, 11, 12], where it 

is possible to compare the obtained numerical solution with the exact analytical solution [1, 2, 6] for 

a semi infinite bar, because in this time regime the behavior is parabolic and the exact solution 

provides a tool for validation of the solutions; however, there is no information in the literature that 

explains the dynamics of the interface at larger time values. For example, in [2], without further 

discussions, the authors mention that the difference between their numerical solutions and the exact 

analytical solution for large times is due to finite size effects. 

For the Dirichlet boundary conditions problem [13], the time behavior of the interface is far from 

being parabolic at large values of time, and one of the physical implications of these type of boundary 

conditions, is that temperature profiles within each phase of the specimen and the interface position 

at large time values, are completely independent of the initial temperature profile. By using Neumann 

boundary conditions, the physical picture changes drastically, since in this case, the solution of the 

problem depends completely on the initial temperature profile, due to conservation of energy. The 

goal of this work is to show that the interface motion is not parabolic as in the Dirichlet boundary 

value problem [13], and show that in this case, the solution depends entirely on the initial temperature 

profile. Even more, since energy conservation must be satisfied at every time step of the simulation, 

we developed a generalization of the non-classical finite difference scheme (NC-FDS). Also a 

generalized version of the heat balance integral method (HBIM) is used, in order to consider several 

temperature profiles and show that the numerical methods are in perfect agreement with our 

predictions. Some results obtained from numerical experiments are shown and compared with the 

predicted interface position and finally, we compare these predictions with solutions obtained from 

the general HBIM and NC-FDS in Aluminum. 

 

2. Statement of the Problem 

 

We consider a sample of size L  prepared with liquid and solid phases of a pure substance, where the 

liquid-solid interface is initially at some position  , and has a temperature equal to the fusion 

temperature fT . It will be assumed that each medium has a temperature profile 
1( , )T x t  and 

2 ( , )T x t  

for liquid and solid phases respectively. The temperature at any point within the liquid phase, is above 

fT  and within the solid phase is below fT . In this work, we consider temperature profiles with 

homogeneous Neumann boundary conditions 

 1 2

0

( , ) ( , )
0, 0,

x x L

T x t T x t

x x 

 
 

 
  (1) 

and an homogeneous Dirichlet boundary condition at the interface 
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 1 2( , ) ( , ) ,fT t T t T     (2) 

where the sub index 1 (2) represents liquid (solid) phase and L  is the size of the specimen. Equation 

(1), means that the bar is thermally isolated from the surroundings which implies that energy is only 

transferred between the liquid and solid phases. These boundary conditions demand energy 

conservation, and as we will show later, this implies that the resulting interface position depends on 

the initial temperature profile. For this reason, several temperature profiles will be considered as 

    ,0 ,  1,2;i iT x f x i    (3) 

where ( )f x  can be obtained in order to satisfy the boundary conditions given by equation (1); with 

(0) B  , and 0B  . To find the solution of the heat equations in each phase, it will be assumed that 

the thermodynamic variables do not depend on the temperature. Therefore, the heat equation in each 

medium is written as 

 
2

2
, with ( 1) (2 ) ( 1) ,i i

i

T T
i x i i L

t x
  

 
      

 
  (4) 

where /i i i ik C   is the heat diffusion coefficient, with heat capacity 
iC , density 

i  and thermal 

conductivity 
ik  at each phase i ; and the Stefan condition (SC) describing the motion of the interface 

 2 1
2 1 ,i f

x x

T Td
L k k

dt x x 




  

 
 

 
  (5) 

where fL  is the latent heat of fusion and 
1  (

2 ) is the density of the liquid (solid) phase. 

3. Numerical Solutions 

Since the Neumann boundary value problem implies that the total energy of the system must be 

conserved, the NC-FDS has been generalized in order to satisfy energy conservation at every time 

interval. In this NC-FDS we will consider a non-homogeneous mesh within each phase. 

3.1 Non-Classical Finite Difference Scheme for a Non-Homogeneous Moving Mesh (NC-FDS) 

An implicit scheme is used; therefore, the partial time derivative of the temperature is expressed as a 

first order approximation of the backward difference in time 

 
, , 1

,
m n m n

i i iT T T

t t

 


 
  (6) 

where t  represents the length of the time step. The discretization of the position x , is represented 

by m  and the discretization of time t , is represented by n . Therefore, in this notation, 
, ( , )m n

i i m nT T x t . Generalization of the NC-FDS over a non-homogeneous mesh is done by adding 

the Taylor expansions for 
1,m n

iT
 and 

1,m n

iT
 up to fourth order in 

ix  by using a step size of different 

length to the right as 
1, ,

i

m n m n

R i ix x x   , and 
, 1,

i

m n m n

L i ix x x    to the left. Keeping in mind that 

 , ( ) , /m n j j j

i i m nT T x t x   , we obtain 

 

   

       

1, 1,
2, ,

3 4, 2 2 , 3 3

1 1 1

2

1 1

6 24

i i

i i i i

i i i i

m n m n
m n m ni i

i i R L

R L R L

m n m n

i R L i R L

T T
T T x x

x x x x

T x x T x x

   
       

     

        

  (7) 
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And, use a more general central difference definition, which applied to the fourth derivative, is written 

as 

  
       

 
2 2 2 21, , , 1,

4, 2 22
, .

i i

i i i i

m n m n m n m n
m n i i i i

i R L

R L R L

T T T T
T o x x

x x x x

   
     

      

  (8) 

The key to obtain the NC-FDS that can be used over a non-homogeneous mesh, is to find an 

expression for the third derivative in terms of the second derivative. We substitute the above equation 

and the expression for the third derivative on equation (7) to obtain an equation in terms of second 

derivatives. Next, every term where the second derivative appears, is replaced by the discretized heat 

equation, and after simplification of the resulting expression, we obtain a more general model of six 

points that can be solved over a non-homogeneous mesh 

 

        

   

1, , 1,

1, 1 , 1 1, 1

5
2

6

5
,

6

( )L L R Rm n m n m n

i i i i i i i i

L Rm n m n m n

i i i i i

T T T

T T T

    

 

 

    

 
      

 

 

  (9) 

where we have defined 

 
 

 
 

 
2 2

, , ,

i i i i i i i i

L Ri i i
i i i

R L L R L R R L

t t t

x x x x x x x x

  
  

  
  
         

   

And 

 
   2 2

, .
6( ) 6( )

i i i i

i i i i

L R R LL R

i i

R L R L

x x x x

x x x x
 

     
 

     
   

With the above definitions, by setting 
i iR Lx x    on equation (9), we can obtain the six point model 

for an homogeneous mesh. In general, for a non-homogeneous mesh, the fourth order approximation 

to the derivatives that appear in equation (1) and in the SC, equation (5) is given by 

  
2

, (1) , 1, 2, 3, 4,

2 2 2 2 2 2

1
25 48 36 16 3 ,

12

m n m n m n m n m n m n

R

T T T T T T
x

        


  (10) 

and 

  
1

, (1) , 1, 2, 3, 4,

1 1 1 1 1 1

1
25 48 36 16 3 .

12

m n m n m n m n m n m n

L

T T T T T T
x

       


  (11) 

4. Heat Balance Integral Method (HBIM) 

In this section, we generalize the HBIM as in [10], in order to consider several temperature profiles. 

In general, we represent the temperature profile as 

    ( , ) , with ( 1) (2 ) ( 1) ,
n

i i i fT x t a x b x T i x i i L                (12) 

where n  must be equal or greater than 2, in order to satisfy the boundary conditions given by 

equations (1) and (2). As usual, 
ia  and 

ib  with 1,2i   for mediums 1 and 2, are functions of time. To 

obtain the initial profile, the values of 
ia  and 

ib  at 0t  s, with 1,2i  , are determined by substitution 

of equation (12) into equation (1) and setting the initial temperature at each side of the specimen as 
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 1 0,0 lT T  for the liquid phase and  2 ,0 sT L T  for the solid phase. After applying Neumann 

boundary conditions to these profiles, the following relations between the functions 
ia  and 

ib  are 

obtained for the liquid and solid phases 

  
11

1 1 2 20 and 0 .
nna nb a nb L 
       (13) 

After substitution of equation (12) in the SC, equation (5), the resulting equation has the form 

 1 1 2 2.i f

d
L k a k a

dt


     (14) 

Integrating the diffusion equation in medium 1, from 0x   to x  , and in a similar manner, 

integrating the diffusion equation in medium 2, from x   to x L , the following set of ordinary 

differential equations (ODE's) in time are obtained 

 
1 21 1

0,
1 2

( )n n ni i i
i i i i i i i i

db d da
b a n b

n dt dt dt


         


  (15) 

with 
1   in medium 1, and 

2 L    in medium 2. Solving for 
1a  and 

2a  from equation (13) and 

substituting in equation (14) and (15) we obtain a set of three ODE's in time for the functions 
ib  and 

  that can be solved with the initial temperature profile. 

5. Results and Discussion 

In this section, the finite difference solutions for several examples will be obtained and compared 

with the approximate analytical solutions for large time intervals. These solutions will be validated 

with the predicted asymptotic behavior of the interface, that can be obtained by using conservation of 

energy. This asymptotic value, will be used in every numerical experiment presented in this section, 

to fine tune the solutions obtained from the NC-FDS and the HBIM. Every numerical experiment will 

be designed so that the temperature at thermodynamic equilibrium of the entire specimen is equal to 

fT . For the Neumann boundary value problem, the change in internal energy of the system must be 

equal to the energy needed for the phase transition. Using the change of internal energy at any given 

position 

 1 1 1 1 2 2 2 2( ) ( ( ,0)) and ( ) ( ( ,0)),eq eqdU x dm C T T x dU x dm C T T x      (16) 

where 
1 1dm Adx  and 

2 2dm Adx  for the liquid (solid) phases. Next, we integrate the above 

equations to obtain the total change in internal energy U . For an isolated system, the change in 

internal energy is used only for the phase transition, ( )i eq fU A L     , where the value of   is 

the initial position of the interface. From this, we can find an exact expression for the position of the 

interface at thermodynamic equilibrium eq . By using the initial temperature profiles shown in 

equation (12), the expression for any value of n , in case of a melting process is 

 
2 1 2 11 1 1 1 2 2 2

2

( ) ( ) ,
2 1 2 1

n n

eq

f f

C a b C a b
L L

L n L n


     



    
         

    
  (17) 

where it is assumed that eq fT T , and for a solidification process 
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2 1 2 11 1 1 2 2 2 2

1

( ) ( ) .
2 1 2 1

n n

eq

f f

C a b C a b
L L

L n L n


     



    
         

    
  (18) 

Let us keep in mind that equations (17) and (18) were derived from the initial temperature profiles 

that appear in equation (12); therefore, the interface position   and the values of the functions 
ia  and 

ib  at medium i  are evaluated at 0st  . It is important to note that, just by using Neumann boundary 

conditions, we obtain equations (17) and (18), which are of completely different nature than the 

interface position in the asymptotic limit, for a Dirichlet boundary value problem [13]. Even more, 

for a Dirichlet boundary value problem, the asymptotic interface position only depends on the thermal 

conductivities of each phase [13]; on the other hand, for the Neumann boundary value problem, the 

interface position for long time intervals depends on the densities, specific heat capacities and latent 

heat of fusion. We will illustrate a few examples where the nonparabolicity of the interface dynamics 

is evident, but we will also show by using the NC-FDS and HBIM, that the interface position strongly 

depends on the shape of the initial temperature profile, as predicted by equations (17) and (18). 

For the first part of the discussion, we will set the thermodynamic variables of density and specific 

heat, equal to one and the fusion temperature will be taken as 0fT  . As in [2], the diffusivity is 

reduced to 
1 2 1 2( ) ( )k k    for the liquid (solid) phase. In this system of units, the SC and diffusion 

equations are simplified correspondingly [2]. All examples presented in this part of the results are 

obtained from the solution of the simplified diffusion equations and the SC over a specimen of length 

1.0L  , and the time increment for the finite difference simulations is 
42.5 10t    . 

In figure 1 we show the results from two numerical experiments. On figure 1-a, the initial profile in 

each phase was obtained by using 0.6  , 0.8lT   and 1.0sT   . Initial values of 0.4  , 1.0lT   

and 0.8sT    were used to obtain the results shown in figure 1-b. By using these initial conditions 

and equation (1), the values of 
ia  and 

ib  at 0t   can be obtained in each case. By setting the densities 

and specific heat capacities equal to one in equations (17) and (18) we can obtain the position of the 

interface at thermodynamic equilibrium, which is also shown in figure 1. Through equations (17) and 

(18), we have designed the experiments in order to reach a desired interface position at 

thermodynamic equilibrium. We have also chosen the initial interface position so that for small times, 

the net flux through the interface produces solidification for the example shown in figure 1-a and 

melting for the case shown in figure 1-b. The experiment was designed this way to show the precision 

of the numerical and semianalytical methods by comparing the results with the predicted interface 

position, and also to demonstrate that even for small time intervals, we can find cases where the 

interface dynamics is not parabolic. The nonparabolicity of   for small time intervals in the example 

shown in figure 1 is a consequence of the boundary conditions imposed on the specimen, and this is 

a particular behavior that can not be observed in a Dirichlet boundary value problem [13]. 

5.1 Non-Parabolic Behavior Close to Thermodynamic Equilibrium in Aluminum 

Here we will discuss the consequences of equations (17) and (18) for the phase transition on a 

thermally isolated specimen of 1.0mL   containing a liquid-solid interface in pure Aluminum. We 

will use the same thermodynamic variables as in [6], which will be assumed to be independent of the 

temperature. For the liquid phase, 
1 1

1 215W m Kk    , 
3

1 2380kg m   and 
1 1

1 1130J kg KC    . 

For the solid phase, 
1 1

2 225.5W m Kk    , 
3

2 2545kg m   and 
1 1

2 1016J kg KC    . A latent heat 

of fusion of 
3396 J kg10fL    and fusion temperature 933.52KfT   are used in the examples 
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shown below. Figure 2 illustrates the resulting interface motion for an initial temperature profile with 

3n  , obtained with the NC-FDS and the HBIM. For the example shown in figure 2-a the initial 

position of the interface is 0.60m  , the initial temperature at 0mx   is 1020KlT  , and at ,x L  

the initial temperature is 
2 525.25KT  . The time step used by the NC-FDS was 0.10s , and it was 

solved by using a moving non-homogeneous mesh with 
1 720N   nodes on the liquid side and 

2 480N   nodes on the solid part of the specimen. As observed in figure 2-a, the solution obtained 

from the NC-FDS and HBIM capture the long time behavior predicted by equation (18), where we 

show the results for the first 
41 s10  of simulation. 

 

Figure 1: Interface motion for an initial temperature profile of the form given by equation (12) 

with 3n  , a fusion point of 0fT   and a latent heat of fusion 2.0fL  . Interface dynamics with 

a) 
1 2.0k  , 

2 1.5k   and an initial interface position of 0.6  . b) 
1 1.5k  , 

2 2.0k   and the 

initial position of the interface is 0.4  . 

Figure 2-b illustrates the dynamics of the interface obtained from an experiment, designed to show 

the predicting power of equation (17). In this case, initial values of 0.40m  , 1173KlT   and 

873.25KsT   were used on an initial temperature profile with 3n  . With these values, and the 

boundary conditions given by equation (1), it is possible to find 
ia  and 

ib  at each phase i , in order to 

obtain the position of the interface at thermodynamic equilibrium, eq , according to equation (17). 

This value is shown on figure 2-b, and tested against the NC-FDS and HBIM. For this example, the 

NC-FDS was solved over a non-homogeneous mesh with 
1 480N   and 

2 720N   nodes with the 

same time step of 0.10s . In this example, the initial temperature profile at each phase was chosen, so 

the loss of internal energy by the liquid phase is greater than the internal energy absorbed by the solid 

phase. In this situation the extra energy lost by the liquid is used to melt a section of solid, so equation 

(17) predicts exactly the amount of liquid and solid that will remain on the sample at thermodynamic 

equilibrium. As shown in figure 2-b, the NC-FDS and HBIM are observed to capture the behavior 

just discussed. 
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Figure 2: Interface motion for Aluminum on a specimen of 1.0mL  , with an initial 

temperature profile of the form given by equation (12), with 3n  . Initial conditions are chosen 

to observe: a) solidification of liquid Aluminum, according to equation (18), and b) melting of 

solid Aluminum according to equation (17). 

Finally, we show two examples where several temperature profiles are used in order to show that for 

the Neumann boundary value problem, the results are highly dependent on the shape of the profile, 

contrary to the expected behavior of the interface in a Dirichlet boundary value problem, where the 

resulting interface position for long time intervals, is completely independent of the initial 

temperature profile [13]. Figures 3-a and 3-b show the resulting interface dynamics obtained with the 

NC-FDS, for the same temperatures 
lT , 

sT  and initial interface position of the previous example, but 

using different values of n  for the temperature profiles given by equation (12). The results shown in 

figure 3 also consider a step-like temperature profile, where the temperature in the liquid and solid 

regions of the specimen are constant functions of the position, and equal to 
lT  (

sT ) for the liquid 

(solid) phases. For the step-function like profile shown in figure 3-a, 
1 720N   and 

2 480N   were 

used. In figure 3-b we used 
1 480N   and 

2 720N   nodes for the step-function like profile. By 

calculating the change of internal energy in the system, it is straightforward to find the position of the 

interface at thermodynamic equilibrium as well. For a melting process, eq  is given by 

   1 1 2

2

( ) ,eq l f s f

f f

C C
T T L T T

L L


   



 
      

 
 

  (19) 

and for a solidification process 

     1 2 2

1

.eq l f s f

f f

C C
T T L T T

L L


   



 
      

 
 

  (20) 

The NC-FDS is observed to capture the asymptotic behavior predicted by equations (17)-(20), where 

the obtained motion of the interface is highly dependent on the initial temperature profile. 
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Figure 3: Interface motion for Aluminum obtained with the NC-FDS over different polynomial 

profiles and for a step-like profile. a) Solidification of liquid Aluminum with 1020KlT   and 

525KsT   and b) Melting of solid Aluminum with 1173KlT   and 873.25KsT  . 

Thermodynamic equilibrium values of the interface position according to equations (17)-(20) 

are also shown for comparison with the numerical solution. 

6. Conclusions 

In this work, we have found for the Stefan problem with homogeneous Neumann boundary 

conditions, general results about the dynamics of the phase transition within the sample that are not 

reported in the literature, and provide a wider understanding on the Stefan class of problems. 

 By using conservation of energy, non-parabolic motion of the interface close to 

thermodynamic equilibrium is predicted. 

 The initial conditions on the system and the nature of the boundary conditions, can give rise 

to examples, where nonparabolicity of the interface dynamics can also be observed at small 

time intervals. 

 By using equation (17), it is possible to design an experiment where a section of solid is 

melted at thermodynamic equilibrium. However, by using heat transport, the initial position 

of the interface may be chosen in order to obtain a net flux that produces solidification of 

liquid for small times. 

 By using equation (18) and heat transport, we can design experiments with an opposite effect 

to the example mentioned above. 

 According to equations (17)-(20), the position of the interface can be predicted exactly and 

numerical methods can be fine tuned and developed in order to capture the physics predicted 

by these equations. 

 On a thermally isolated system, the main physics that governs the dynamics of the interface, 

is conservation of energy. Therefore, the long time behavior of the interface, strongly depends 

on the densities, specific heat capacities at each phase and the latent heat of fusion, as 

predicted by equations (17)-(20). 

 Since the system is thermally isolated and the initial temperature profile is related with the 

amount of total energy, contrary to a Dirichlet boundary value problem, the resulting position 
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of the interface at thermodynamic equilibrium depends highly on the shape of the profile, as 

shown by equations (17)-(20). 

 The generalized NC-FDS and HBIM are observed to capture the predicted position of the 

interface at thermodynamic equilibrium. 
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