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The magnetohydordynamic flow and heat transfer of two viscous incompressible 
fluids through porous medium has been investigated in the paper. Fluids flow 
through porous medium between two parallel fixed isothermal plates in the pres-
ence of an inclined magnetic and perpendicular electric field. Fluids are electri-
cally conducting, while the channel plates are insulated. The general equations 
that describe the discussed problem under the adopted assumptions are reduced 
to ordinary differential equations and closed-form solutions are obtained. Solu-
tions with appropriate boundary conditions for velocity and temperature fields 
have been obtained. The analytical results for various values of the Hartmann 
number, load factor, viscosity and porosity parameter have been presented 
graphically to show their effect on the flow and heat transfer characteristics.  
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Introduction 

The flow and heat transfer of electrically conducting fluids in channels and circular 
pipes under the effect of a transverse magnetic field occurs in MHD generators, pumps, accel-
erators, and flow-meters and have applications in nuclear reactors, filtration, geothermal sys-
tems and others.  

The interest in the outer magnetic field effect on heat-physical processes appeared 
seventy years ago. Blum [1] carried out one of the first works in the field of mass and heat 
transfer in the presence of a magnetic field. The requirements of modern technology have 
stimulated the interest in fluid flow studies, which involve the interaction of several phenomena. 
One of these phenomena is certainly viscous flow of electrically conducting fluid through po-
rous medium in the present of magnetic field. The mathematical theory of the flow of fluid 
through a porous medium was initiated by Darcy [2]. For the steady flow, he assumed that vis-
cous forces were in equilibrium with external forces due to pressure difference and body forces. 

The flow and temperature distribution through porous channels is of great im-
portance in range of scientific and engineering domains, including earth science, nuclear en-
gineering, and metallurgy. Cunningham and Williams [3] reported several geophysical appli-
cations of flow in porous medium. McWhirter et al. [4] reported the experimental results of 
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the MHD flow in a porous medium required for the design of a blanket of liquid metal around 
a thermonuclear fusion-fission hybrid reactor. Research results presented by Prescott and In-
cropera [5] and Lehmann et al. [6] show that applied permanent magnetic field during the so-
lidification process modify the intensity of the inter-dendritic flow of the metallic liquid in the 
mushy zone, i. e. a porous medium. This technique allows the reduction of micro-macro seg-
regation occurring during casting processes. 

The flow and heat transfer of a viscous incompressible electrically conducting fluid 
between two infinite parallel insulating plates has been studied by many researchers [7-10]. 
Several analytical and numerical works in the literature are also devoted to the study of the 
MHD flow of a conducting fluid through a porous medium between two parallel fixed plates. 
Alpher [11] examined an incompressible laminar flow and convection heat transfer between 
parallel plates through a transverse magnetic field. Cox [12] discussed a 2-D incompressible 
viscous fluid between two parallel porous walls with symmetric and asymmetric suction. Tawil 
and Sundarammal [13] presented results of MHD flow under stochastic porous media, while 
Yih [14] examined the radiation effects on natural convection over a cylinder embedded in po-
rous media. Vidhya and Sundarammal [15] considered an incompressible viscous fluid flow 
and temperature distribution in a porous medium between two vertical parallel plates and the 
problem is analyzed analytically. Geindreau and Auriault [16] studied tensorial filtration law in 
rigid porous media for steady-state slow flow of an electrically conducting, incompressible and 
viscous Newtonian fluid in the presence of a magnetic field. Recently, Singh and Rakesh [17] 
have investigated the heat and mass transfer MHD flow through porous medium.  

All the mentioned studies pertain to a single-fluid model. Most of the problems re-
lating to the petroleum industry, geophysics, plasma physics, magneto-fluid dynamics, etc., 
involve multi-fluid flow situations. The problem concerning the flow of immiscible fluids has 
a definite role in chemical engineering and in medicine [18]. There have been some experi-
mental and analytical studies on hydrodynamic aspects of the two-fluid flow reported in the 
literature. Bird et al. [19] obtained an exact solution for the laminar flow of two immiscible 
fluids between parallel plates. Bhattacharya [20] investigated the flow of two immiscible flu-
ids between two rigid parallel plates with a time-dependent pressure gradient. Later, Mitra 
[21] analyzed the unsteady flow of two electrically conducting fluids between two rigid paral-
lel plates. The physical situation discussed in [21] is one possible case. Another physical phe-
nomenon is the case in which the two immiscible conducting fluids flow past permeable beds. 
Chamkha [22] reported analytical solutions for flow of two-immiscible fluids in porous and 
non-porous parallel-plate channels. The findings of a study of this physical phenomenon have 
a definite bearing on petroleum and chemical technologies and on biomechanics.  

These examples show the importance of knowledge of the laws governing immiscible 
multi-phase flows for proper understanding of the processes involved. In modeling such prob-
lems, the presence of a second immiscible fluid phase adds a number of complexities as to the 
nature of interacting transport phenomena and interface conditions between the phases. 
Lohrasbi  and Sahai [23] studied two-phase MHD flow and heat transfer in a parallel plate 
channel with one of the fluids being electrically conducting. Following the ideas of Alireza and 
Sahai [24], Malashetty et al. [25, 26] have studied the two-fluid MHD flow and heat transfer in 
an inclined channel, and flow in an inclined channel containing porous and fluid layer.  

Keeping in view the wide area of practical importance of multi-fluid flows as previ-
ously mentioned, the objective of the present study is to investigate the MHD flow and heat 
transfer of two immiscible fluids through the porous medium in the presence of applied elec-
tric and inclined magnetic field.  
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Mathematical model 

As mentioned in the introduction, the problem of the MHD flow and heat transfer of 
incompressible and electrically conductive fluid through porous medium has been considered 
in this paper. Fully developed flow takes place be-
tween parallel plates that are at a distance 2h, as 
shown in fig. 1. 

Electrically conductive fluids flow through 
the porous medium due to the constant pressure 
gradient, while the fluids are exposed to the exter-
nally applied inclined magnetic and perpendicular 
electric field. The problem is analyzed for electri-
cally insulated channel plates, while their tempera-
ture is maintained at constant values Tw1 and Tw2. 
The fluids in the two regions have been assumed 
immiscible and incompressible and the flow has 
been steady, 1-D and fully developed. Both fluids flow through homogeneous and isotropic 
porous medium of permeability,κ . Furthermore, the two fluids have different kinematic vis-
cosities ν1 and ν2 and densities ρ1 and ρ2. The physical model, shown in fig. 1, consists of two 
infinite parallel plates extending in the x- and z-direction.  

The region 1 0h y− ≤ ≤  has been occupied by a fluid of viscosity, μ1, electrical con-
ductivity, σ1, and thermal conductivity, k1, and the region 2: 0 y h≤ ≤  has been filled by a lay-
er of different fluid of viscosity ,μ2, thermal conductivity, k2, and electrical conductivity, σ2. 

A uniform magnetic field of the strength, B0, has been applied in the direction mak-
ing an angle, θ , to the y axis, electric field acts in the direction of z-axis while both fluids 
flow with velocity ui in x-direction: 

 v [ ( ), 0, 0]i iu y=
  (1) 

 ( )2
0 0B 1 , , 0B Bλ λ= −



 (2) 

 E (0, 0, )E=


 (3) 

where cos .λ θ=  
The described MHD fluid flow and heat transfer problem is mathematically present-

ed with a continuity equation: 

 v 0i∇ =
  (4) 

momentum equation for flow in the porous medium: 
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and an energy equation: 
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Figure 1. Physical model and co-ordinate 
system 
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In previous equations and in following boundary conditions used symbols are: i de-
notes fluid 1 or 2, εi is equal to 1 for porous medium or 0 for clean medium, κ  is the porous 
medium permeability, cpi – the specific heat capacity, Ti – the thermodynamic temperature,  
Φi – the dissipation function. The fourth term on the right hand side of eq. (5) is the magnetic 
body force, and j



 is the current density vector defined by: 

 j (E v B)i i iσ= + ×


 

  (7) 

Finally, the momentum and energy equation for described flow and heat transfer 
problem takes the following form: 
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The flow and thermal boundary conditions have been unchanged by the addition of 
electromagnetic fields. The no slip conditions require that the fluid velocities are equal to the 
velocities of walls and boundary conditions on temperature are isothermal conditions. In addi-
tion, the fluid velocity, sheer stress and heat flux must be continuous across the interface y = 0. 
Equations, which represent these conditions for fluids in regions 1 and 2, are: 

 2 1 1 2( ) 0, ( ) 0, (0) (0)u h u h u u= − = =  (10) 

 1 2
1 2
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d d
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It is convenient to transform eqs. (8) and (9) and boundary conditions (10) to (13) to 
a non-dimensional form. The following transformations have been used: 
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where U is the referent velocity, Hai – the Hartmann number, K – the loading factor, Λ – the 
porosity parameter, Pri – the Prandtl number, and Eci – the Eckert number. 
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The dimensionless governing equations, boundary and interface conditions now take 
the following form: 
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Velocity and temperature distribution 

The solutions of eqs. (15) and (16) with boundary and interface conditions (17) and 
(18) have the following forms:  

 *( ) exp( ) exp( )i i i i i iu y A y B yω ω* * *= + − + Ω  (19) 
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With the aid of the expressions for velocity and temperature distribution, following 
important characteristics of the flow and heat transfer are derived: 
– the flow rate: 
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– the shear stress at the plates: 
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– the mean temperature: 
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– dimensionless heat transfer coefficient – Nusselt number on the plates: 
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Results and discussion 

In this paper, results for steady MHD flow and heat transfer of two viscous incom-
pressible fluids through porous medium are presented and discussed for various parametric 
conditions. The part of obtained results has been presented graphically in figs. 2 to 13. Figures 
2 and 3 present the effect of the Hartmann number on velocity and temperature field. In fig. 2 
the velocity profiles over the channel height for several values of the Hartmann number are 
shown. It can clearly be seen that as the Hartmann number is increased, the velocity profiles 
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become flatter. In the center of the duct, often called the core, the Lorentz force acts in the di-
rection opposite to the flow direction and tends to retard the flow. The main balance of forces 
is established between the Lorentz force and the driving pressure gradient, while the load fac-
tor K = 0 (applied external electric field is zero). The influence of the Hartmann number on 
the velocity profiles is more pronounced in the channel region 2 containing the fluid with 
higher electrically conductivity compared to that in region 1. For large values of Hartmann 
number flow can be almost completely stopped in the region 2. 

 
Figure 2. Effect of Hartmann number  
on velocity 

 
Figure 3. Effect of Hartmann number on  
non-dimensional temperature 

Figure 3 shows the influence of the Hartmann number on the dimensionless temper-
ature. Several interesting observations can readily be made. First, it should be recalled that, in 
the solution, both viscous heating and Joule heating were included in the analysis. As ex-
pected, the stronger the magnetic field, the more the flow is retarded in the both fluid regions 
of the channel. With the increase of the Hartmann number temperature in the middle of the 
channel significantly decreases, while near the plate’s increases mainly due to viscous heating 
resulted from large shear stresses. A MHD effect on the thermal characteristics of the flow is 
manifested in redistribution of the internal heat sources (viscous dissipation and Joule heat-
ing) under the influence of the magnetic field. The effect of increasing the Hartmann number 
on temperature profiles (fig. 3) in both of the parallel-plate channel regions was in equalizing 
the fluid temperatures. 

Figures 4 and 5 show the effect of the magnetic field inclination angle on the distri-
bution of velocity, and temperature. Figure 4 shows the effect of the angle of inclination on 
velocity which predicts that the velocity increases as the inclination angle increases. These re-
sults are expected because the application of a transverse magnetic field normal to the flow di-
rection has a tendency to create a drag-like Lorentz force which has a decreasing effect on the 
flow velocity. In fig. 5, the dimensionless temperature distribution as a function of y*, for var-
ious values of applied magnetic field inclination angle, is shown. It can be seen from figs. 4 
and 5 that the magnetic field flattens out the velocity and temperature profiles and reduces the 
flow energy transformation as the inclination angle decreases, for the 0K =  (short-circuit 
condition). 

In fig. 6 velocity profiles are displayed with the variations in porosity parameter Λ. 
From this figure, it is noticed that the velocity of the fluid increases from with the increase in  
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Figure 4. Effect of magnetic field inclination  
angle on velocity 

 
Figure 5. Effect of magnetic field inclination 
angle on non-dimensional temperature 

the values of the porosity parameter. Physically, an increase in the permeability of porous 
medium leads the rise in the flow of fluid through it. When the holes of the porous medium 
become large, the resistance of the medium may be neglected. An effect of porosity parame-
ter, Λ, on temperature is presented in fig. 7. From this figure, it is noticed that the temperature 
of the fluid slightly increases with the increase in the values of the porosity parameter, Λ. This 
is due to the balance of Joule heating and viscous heating. For small values of porosity pa-
rameter, only Joule heating is pronounced and for higher values of porosity parameter viscous 
heating increase temperature significantly in both fluids region. 

 
Figure 6. Effect of porosity parameter on velocity 

 
Figure 7. Effect of porosity parameter on  
non-dimensional temperature 

Of particular significance is the analysis when the loading factor, K, is different 
from zero (value of K define the system as generator, flow-meter or pump), while the Hart-
mann number is constant. The introduction of parameter K modifies the usual Hartmann flow. 
In addition, for a given Hartmann number, the relationship between pressure gradient and 
mean flow or flow rate is altered by K. In the case when 0K ≠  the external electric field 
plays the role of a supplementary pressure gradient. Figure 8 shows the effect of the K on ve-
locity, which predicts the possibility to change the flow direction. Unlike the short circuit 
case, an interaction between fluids at the interface is significantly expressed.  



Petrović, J. D., et al.: Porous Medium Magnetohydrodynamic Flow and … 
S1414 THERMAL SCIENCE, Year 2016, Vol. 20, Suppl. 5, pp. S1405-S1417 

 
Figure 8. Effect of loading factor on velocity 

 
Figure 9. Effect of loading factor on  
non-dimensional temperature 

In the figure 9 the temperature distribution as a function of y*, for various values of 
K, is shown. For K = 0, and high intensity of magnetic field the temperature distribution in 
both fluid regions is almost linear i. e. temperature is affected only by conduction. In the case 
when 0K ≠  heat transfer is affected by the viscous dissipation and Joule heating. Viscous 
dissipation dominates in the regions near the plates and at the interface of fluids. Towards the 
middle of the each fluid region, temperature rises as a result of Joule heating. Figure 9 illus-
trates that with the increase in the K the heat transfer between the fluids increases. 

The numerical values of shear stress at the lower and upper plate are presented in 
figs. 10 and 11 for different values of Hartmann and porosity parameter, while the loading 
factor take the positive, zero or negative values. Figure 10 presents the effect of the Hartmann 
number. Increasing of Hartmann number cause a decrease of shear stress for the short circuit 
case (K = 0). In the case when external electric field play the role of additional pressure gradi-
ent shear stress at both plates are increased, and for high magnetic field intensity stresses at 
both plates reach some constant value. 

 
Figure 10. Effect of Hartmann number  
on shear stress 

 
Figure 11. Effect of porosity parameter  
on shear stress 

Figure 11 presents the effect of the porosity parameter on shear stress, while the 
Hartmann numbers take constant values. Increasing of porosity parameter primarily cause a 
increase of shear stress at both plates because of velocity increase. For high values of porosity 
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parameter resistance of porous medium can be neglected and shear stress at the plates de-
creases for all values of loading factor, K. It is interesting to note increased shear stress in flu-
id region 1 with higher viscosity and also increased values for loading factor different from 
zero. 

Figures 12 and 13 shows the behavior of the Nusselt number on lower and upper 
plate for different values of magnetic field intensity and porosity parameter. At the both plates 
and for both fluids Nusselt number decrease for Hartmann number between 1 and 2. This is 
due to the mutual influence of viscous and Joule heating. Increase of magnetic field intensity 
in the case when loading factor is different from zero increase the heat transfer. For both 
plates with increase of magnetic field intensity Nusselt number decrease for the case when 
loading factor is equal to zero. For the case of Hartmann flow heat transfer is mainly due to 
the conduction. Increase of porosity parameter decrease the Nusselt number for both fluids 
and for all values of loading factor. Convective heat transfer is more intense at the upper 
plate. For short circuit case porosity parameter t have very small influence on heat transfer. 
External electric field as additional pressure gradient increase significantly the heat transfer. 
At the upper plate Nusselt number changes rapidly for the case when loading factor is differ-
ent from zero, and this is also the case for the lower plate, while in the case of short circuit 
conditions (K = 0) the temperature change near the plates are moderate. 

 
Figure 12. Effect of Hartmann number on  
heat transfer 

 
Figure 13. Effect of porosity parameter on  
heat transfer 

Conclusion 

In this paper the MHD flow and heat transfer of two viscous incompressible fluids 
through porous medium has been investigated in the paper. Fluids flow through homogeneous 
and isotropic porous medium of permeability, ,κ  between two parallel fixed isothermal plates. 
A uniform magnetic field has been applied in the direction making an arbitrary angle to the 
vertical axis, while electric field acts perpendicular to the flow. The general equations that de-
scribe the discussed problem under the adopted assumptions are reduced to ordinary differen-
tial equations and closed-form solutions are obtained. Effects of Hartmann number and poros-
ity parameter on the heat and mass transfer have been analyzed. The influences of each of the 
governing parameters on dimensionless velocity, dimensionless temperature, shear stress and 
Nusselt number are discussed with the aid of graphs. 
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Nomenclature 
B


 – magnetic field vector, [T] 
cpi – specific heat capacity of fluid i [Jkg−1K−1] 
E


 – electric field vector, [Vm−1] 
Eci – Eckert number in region i 
Hai – Hartmann number in region i 
h – region height, [m] 
j


 – current density vector, [Am−2] 
K – load factor 
ki – thermal conductivity of fluid i, [WK−1m−1] 
Pri – Prandtl number of fluid in region i 
p – pressure, [Pa] 
T – thermodynamic temperature, [K] 
ui – fluid velocity in region i, [ms−1] 
v  – velocity vector [ms–1] 
x – longitudinal co-ordinate, [m] 

y – transversal co-ordinate, [m] 
Greek symbols 

γi – viscosities ratio of fluids 
δ – ratio of thermal conductivities 
εi – 1 for porous medium, 0 for clean medium 
Λ – porosity parameter 
κ – permeability of porous medium [m2] 
Ф – dissipative function 
µi – dynamic viscosity in region i, [kgm−1s−1] 
νi – kinematic viscosity in region i, [m2s−1] 
Өi – dimensionless temperature in region i 
ρi – density of fluid in region i, [kgm−3] 
σi – electrical conductivity region i, [Sm−1] 
τ – shear stress, [kgm−1s−2] 
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