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A thermal buckling analysis of functionally graded thick rectangular plates 

according to von Karman nonlinear theory is presented. The material 

properties of the functionally graded plate, except for the Poisson’s ratio, 

were assumed to be graded in the thickness direction, according to a power-

law distribution, in terms of the volume fractions of the metal and ceramic 

constituents. Formulations of equilibrium and stability equations are derived 

using the high order shear deformation theory based on different types of 

shape functions. Analytical method for determination of the critical buckling 

temperature for uniform increase of temperature, linear and nonlinear 

change of temperature across thickness of a plate is developed. Numerical 

results were obtained in Маtlab software using combinations of symbolic 

and numeric values. The paper presents comparative results of critical 

buckling temperature for different types of shape functions. The accuracy of 

the formulation presented is verified by comparing to results available from 

the literature. 
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1. Introduction 

Functionally graded materials (FGM) are composite materials in which there is a continuous 

and a discontinuous variation of their chemical composition and/or microstructure through defined 

geometric distance. Mechanical properties such as Young’s modulus of elasticity, Poisson’s ratio, 

shear modulus, as well as material thickness, are graded in recommended directions, and a gradient 

property can be stepwise or continuous, [1]. Delamination between layers is the biggest and the most 

frequently analyzed problem concerning conventional composite laminates. Most frequently used 

FGM is metal/ceramics, where ceramics have a good temperature resistence, while metal is superior in 

terms of toughness. Functionally graded materials, which contain metal and ceramic constituents, 

improve thermo-mechanical properties between layers because of which delamination of layers should 

be avoided due to continuous change between properties of the constituents. By varying a percentage 

of volume fraction content of the two or more materials, FGM can be formed so that it achieves a 

desired gradient property in specific directions. 
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The thermo-elastic behavior of a FG rectangular ceramic-metal plate was presented by Praveen 

and Reddy by using a four node rectangular finite element based on the first order shear deformation 

theory (FSDT), including von Karman’s non-linear effect [2]. Using and expanding the adopted 

formulation by Praveen and Reddy, Reddy [3] studied the static analysis of the FG rectangular plates 

using the third order shear deformation theory (TSDT). Using the TSDT, he defined displacement 

field based on the finite element of the plate with the eight-degrees of freedom per node. This 

formulation explains the thermo-mechanical coupling and von Karman’s geometrical non-linearity. 

Woo and Meguid [4] studied non-linear deformations of thin FG plates and shells using von Karman’s 

classical non-linear plate theory under thermomechanical loads. The authors compared the stresses and 

displacements for ceramic, metal and FG plates and they concluded that displacements of the FG plate 

were, even with a small ceramic volume fraction, significantly smaller than displacements of the metal 

plate. Ma and Wang [5] researched a large deformations by bending and buckling of an 

axisymmetrical simply supported and fixed circular FG plate using the von Karman’s non-linear plate 

theory. The authors of the paper made an assumption that mechanical and thermal properties of FG 

materials vary continuously according to the power law of the volume fraction of the constituents. 

Lanhe [6] derived equilibrium and stability equations of a moderately thick rectangular simply 

supported FG plate under thermal loads using FDST. Buckling temperature is derived for two types of 

thermal loading – uniform temperature increase and gradient increase through the thickness of the 

plate. Chi and Chung [7, 8] obtained a closed-form solution of a simply supported FG rectangular 

moderately thick plate under transverse load using the classical plate theory (CPL) and Fourier series 

expansion. They assumed that the elastic modulus varies in the thickness direction of the plate, 

depending on the variation of the volume fraction of the constituents. Poisson’s ratio remains constant. 

Closed-form analytical solution is proven by comparing to numerical results with finite element 

method (FEM). Chung and Che [9] analyzed a simply supported, elastic, moderately thick, rectagular 

FG plate under linear temperature changes in the thickness direction of the plate. They assumed that 

Young’s modulus of elasticity and Poisson’s ratio are constant throughout the plate. However, the 

thermal expansion coefficient varies depending on the variation of the volume fraction of the 

constituents, based on the power law or exponential function in the thickness direction. 

2. Description of the problem 

Functionally graded rectangular plates of a b h   dimensions, where the z-axis is in direction 

of thickness h, are studied in this paper. Young’s modulus of elasticity, thermal expansion coefficient 

and changes in temperature are defined according to the power law [10]: 
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respectively, where subscripts “c” and ”m” refer to ceramics and metal, respectively. By using 

substitution  1/ 2 /z h  , each of the previously mentioned laws represents a function of  . If the 

product is further defined as      E z z T z  , it is not difficult to conclude that for defined 

properties of materials and defined values of p and s (p defines the percentage of ceramic or metal 

volume,  0 s    [10]), crT  remains the only unknown value in the product. Analytical procedure 
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for determining the critical buckling temperature for uniform increase of temperature, linear and 

nonlinear change of temperature across the thickness of a plate, is developed here. 

3. Displacement field and constitutive equations 

Disadvantages of the classical lamination theory, and the first order shear deformation theory 

which require correctional factors, are eliminated by many authors by introducing the shear 

deformation shape functions (tab. 1). Many of those shape functions are introduced in order to give the 

better results for specific kinds of loads and specific static or dynamical problems. It should be 

emphasized that the following shape functions are not generally applicable to all kinds of problems. 
 

Таble 1. Shear deformation shape functions defined by different authors 

Number of shape 

function (SF)  
Name of authors Shape function f(z)

 

 

SF 1 Ambartsumain [11]   2 2/ 2 / 4 / 3z h z  

SF 2 
Kaczkowski , Panc  and  

Reissner [12] 
  2 25 / 4 1 4 / 3z z h

 SF 3 Levy, Stein, Touratier [13]    / sin /h z h   

SF 4 Mantari, at all [14]      cos / /2
sin / / 2

z h
z h e z h


   

SF 5-6 Mantari at all [15]      2tan sec / 2 , 1/ 5 , / 2mz zm mh m h h   

SF 7 
Karama, at all [16],  

Aydogdu [17] 
     2 2

exp 2 / ,   exp 2 / / ln ,  >0z z h z z h      

SF 8 Mantari, at all [18]  
2

2 /
2.85 0.028

z h
z z


   

SF 9 El Meiche, at all [19]      / sin / ,   1,1/ cosh( / 2) 1h z h z           

SF 10 Soldatos [20]    sinh / cosh 1/ 2h z h z  

SF 11 Akavci and Tanrikulu [21]        2 2sec / sec / 4 1 / 2 tanh / 4z h z h z h         

SF 12 Akavci and Tanrikulu [21]        23 / 2 tanh / 3 / 2 sec 1/ 2h z h z h   

SF 13 Mechab, at all [22] 
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The displacement field is here taken as follows, [15]: 
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where  f z is a shape function. In order to define components of unit loads, it is necessary to apply the 

relations between displacements and strains in accordance with the von Karman’s non-linear theory of 

elasticity [2]. Using a generalized Hooke’s law, as well as the stiffnes matrix [10], and taking into 

account the effect of the change in temperature (eq. 1) and thermal expansion, which cause a strain 

T  [23], the following components of unit loads are obtained: 
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In eq. (3), by grouping the terms with the elements of constitutive matrix, it is possible to define 

new matrices: 
 

           

      

22

2
'

, ,  D ,  E ,  ,  1, , , , , ,   for   , = 1,2,6 ,

,  , 4,5 .

h

ij ij ij ij ij ij ij

h

h

lr lr

h

A B F G Q z f z z zf z f z dz i j

H Q f z dz l r











 




 

(4) 

 

In order to get an equilibrium equation, it is necessary to define the deformation energy in the 

following form [10]: 
  

         .
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Using the principles of minimum potential energy, equilibrium equations become: 
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Stability equation for a thick FG plate is derived based on the equilibrium equation (6). The 

stability equation of the plate under thermal load can be defined using the displacement components 

0 0 0 0 0, , , andx yu v w   . Displacement components of the next stable configuration are the following: 
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where 
1 1 1 1 1, , , andx yu v w   are the displacement components of arbitrarily small deviation from the 

stable configuration. Assuming that temperature is constant in the xy-plane of the plate and that it is 

changing only in the thickness direction of the plate, the stability equation can be derived by 

substituting eq. (7) and eq. (3) into eq. (6). In such obtained equation, terms 0 0 0 0 0, , , andx yu v w   do 

not exist because they vanish due to satisfying the equilibrium condition (eq. 6). Therefore, the 

stability equations of the functionally graded rectangular plate are the following: 
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where 0 0 0, andxx yy xyN N N  are the resultants of the pre-buckling forces: 
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Eq (8) can be solved by using the analytical and numerical methods. In order to obtain 

analytical solutions, assumed solution forms and boundary conditions are adopted in accordance to 

Navier’s methods applied in [24-26]. Procedure for obtaining the results by combining the symbolic 

and numerical coefficient values, which occur in these kinds of problems, is implemented. 

Boundary conditions along edges of the simply supported rectangular plate, according to [26], 

are the following: 
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Taking into account the previously defined boundary conditions, based on [24], it is possible to 

assume that Navier’s solution is in the following form: 
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where , , , ,mn mn mn xmn ymnU V W T T  are arbitrary parameters, which are to be determined. Furthermore, using 

the Navier’s solution, equilibrium equation becomes: 
 

  , L I U 0
 (12) 

 

where  
ʊ

mn mn mn xmn ymnU V W T TU  and   is the buckling parameter.  Coefficients 

,ijL  , 1 5i j    are defined in the following way: 
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while the matrix  ,  , 1 5ijI i j   is defined as: 

 2 0 2 0

0,
,

,  , 3  xx yyN N i j 


 

 

I

 

(14) 

where / ,  /m a n b     . To obtain the nontrivial solutions, it is necessary for the determinant in 

eq. (12) to be equal to zero: 

0. L I
 (15) 

4. Numerical results 

The aim of this section is to check the accuracy and the effectiveness of the given theory in 

determining the critical buckling temperature of FG plates for uniform increase of temperature, linear 

and nonlinear change temperature across thickness. In order to do that, different numerical examples 

are shown, and the obtained results were compared to the results available from the literature. The 

theory presented in this paper is verified by the examples of the square plate a/b=1, which was 

considered in [27, 28, 10]. Unlike [28], where TSDT is applied, and [27, 10] where HSDT is applied, 

based on just one shape function, comparative analysis of all shape functions (tab. 1) is done here. 

Besides the results, which are available in the literature, this paper shows results for a/h (5 and 10) and 

a/b (2 and 5) ratios. Material properties, used in the numerical examples, were the following: 

Metal (Al, Aluminum): 5 6 10.7 10 [ ], 0.3, 23 10 [ ],M ME MPa C           

Ceramics (Al2O3, Alumina): 5 6 13.8 10 [ ], 0.3, 7.4 10 [ ].C CE MPa C          

In the case of graded change in temperature, the temperature at the metal surface is 5MT C  . 

Table 2 shows the values of critical buckling temperatures of rectangular FG plates under a uniform 

increase of temperature. Thick and moderately thick plates were considered in ratios a/h=5 and 

a/h=10. Using the ratios, a/h=10, a/b=1 and p=0, there was a good match of results for all the given 

shape functions with the results from the papers [27, 28], [10]. An insignificant deviation was noticed 

in the shape function marked as SF4. During the analytical procedure in MATLAB, it is noticed that 

only SF1, SF2, SF3, SF10, SF13 shape functions could give solutions for integrals defined in eq. (4) in 

closed-form, while in the case of other shape functions, a numerical integration had to be conducted. It 

is noticed that the difference between results obtained by different shape functions increases with the 

increase of the (a/b) ratio, and it decreases with the increase of (a/h) ratio, proving the fact that the 

effect of shape functions is inversely proportional to the plate thickness. 

Figure. 1a shows the decrease of the difference between the obtained results with the increase of 

the value p, so when p>5, the constant ratio a/h=10 and a variable ratio (a/b), the curves merge. Shape 

functions do not have a significant effect on this behavior because the curves obtained by the use of 

SF3, SF10, SF12 and SF13 completely overlap, which can be clearly seen in the fig. 1a. In fig. 1b, it 

can be clearly seen that the increase of (a/h) ratio, regardless of the p value, causes the curves to 

asymptotically approach zero, which is in accordance with the fact that thin plates have lower 

resistance to temperature change. 
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Table 2. Comparison of critical buckling temperatures (∆Tcr) of rectangular FGM plates under 

a uniform increase of temperature (a/h=5, a/h=10 and m=n=1) 

 p Source 
a/h=5 a/h=10 

a/b =1 a/b =2 a/b =5 a/b =1 a/b =2 a/b =5 

0 [27] 

[28] 

[10] 

SF 1 

SF 2 

SF 3 

SF 4 

SF 5 

SF 6 

SF 7 

SF 8 

SF 9 

SF 10 

SF 11 

SF 12 

SF 13 

--- 

--- 

--- 

5583.442 

5583.442 

5585.559 

5621.881 

5583.426 

5587.882 

5590.910 

5591.659 

5591.659 

5583.400 

5591.409 

5584.615 

5583.510 

--- 

--- 

--- 

10959.448 

10959.448 

10971.195 

11128.293 

10959.286 

10970.575 

10995.856 

10999.186 

10999.186 

10958.981 

10983.034 

10966.460 

10960.024 

--- 

--- 

--- 

23192.800 

23192.800 

23351.112 

24554.451  

23189.151 

23065.303 

23580.381 

23608.379 

23608.379 

23181.701 

23086.289 

23297.570 

23204.664 

1618.680 

1617.484 

1618.750 

1618.681 

1618.681 

1618.820 

1621.682 

1618.681 

1619.120 

1619.225 

1619.283 

1619.283 

1618.681 

1619.429 

1618.752 

1618.684 

--- 

--- 

--- 

3747.312 

3747.312 

3748.159 

3764.011 

3747.307 

3749.487 

3750.450 

3750.774 

3750.774 

3747.302 

3751.109 

3747.766 

3747.333 

--- 

--- 

--- 

12872.652 

12872.652 

12891.308 

13119.689 

12872.361 

12883.915 

12928.084 

12932.982 

12932.982 

12871.799 

12900.319 

12884.026 

12873.662 

1 [27] 

[28] 

[10] 

SF 1 

SF 2 

SF 3 

SF 4 

SF 5 

SF 6 

SF 7 

SF 8 

SF 9 

SF 10 

SF 11 

SF 12 

SF 13 

--- 

--- 

--- 

2671.531 

2671.531 

2672.409 

2687.462 

2671.524 

2673.373 

2674.629 

2674.939 

2674.939 

2671.514 

2674.835 

2672.017 

2671.559 

--- 

--- 

--- 

5398.066 

5398.066 

5403.230 

5472.168 

5397.995 
5402.958 

5414.066 

5415.529 

5415.529 

5397.861 

5408.433 

5401.149 

5398.320 

--- 

--- 

--- 

12201.408 

12201.408 

12280.777 

12882.413 

12199.578 

12137.451 

12395.630 

12409.648 

12409.648 

12195.841 

12147.980 

12253.939 

12207.357 

758.390 

757.891 

758.424 

758.395 

758.395 

758.450 

759.588 

758.395 

758.570 

758.611 

758.634 

758.634 

758.395 

758.692 

758.423 

758.396 

--- 

--- 

--- 

1775.555 

1775.555 

1775.899 

1782.344 

1775.553 

1776.440 

1776.831 

1776.963 

1776.963 

1775.551 

1777.099 

1775.740 

1775.563 

--- 

--- 

--- 

6406.862 

6406.862 

6415.235 

6517.540 

6406.732 

6411.918 

6431.733 

6433.930 

6433.930 

6406.479 

6419.278 

6411.967 

6407.316 

10 [27] 

[28] 

[10] 

SF 1 

SF 2 

SF 3 

SF 4 

SF 5 

SF 6 

SF 7 

SF 8 

SF 9 

SF 10 

SF 11 

SF 12 

SF 13 

--- 

--- 

--- 

2276.788 

2276.788 

2275.519 

2290.659 

2276.857 

2285.447 

2276.487 

2276.720 

2276.720 

2277.006 

2286.626 

2275.691 

2276.584 

--- 

--- 

--- 

4205.548 

4205.548 

4203.601 

4265.870 

4205.716 

4231.109 

4209.521 

4210.599 

4210.599 

4206.087 

4234.654 

4203.457 

4205.060 

--- 

--- 

--- 

7964.373 

7964.373 

8011.792 

8477.768 

7963.455 

7961.675 

8092.708 

8103.084 

8103.084 

7961.620 

7962.595 

7994.618 

7967.439 

692.690 

692.519 

692.570 

692.694 

692.694 

692.544 

693.799 

692.702 

693.549 

692.597 

692.615 

692.615 

692.717 

693.664 

692.570 

692.672 

--- 

--- 

--- 

1562.032 

1562.032 

1561.350 

1568.105 

1562.066 

1566.244 

1561.714 

1561.814 

1561.814 

1562.141 

1566.815 

1561.457 

1561.928 

--- 

--- 

--- 

4840.685 

4840.685 

4839.654 

4929.058 

4840.864 

4871.915 

4849.198 

4850.812 

4850.812 

4841.265 

4876.290 

4838.988 

4840.175 
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а)  a/h=10 b)  a/b =1 

Figure 1.  Effect of the aspect ratio a/b and a/h on the critical buckling temperature crʊ  

under a uniform increase of temperature 

Similar situation can be noticed under the linear change of temperature. All the presented shape 

functions gave the results, which match the ones from the papers [27, 28] and [10]. The greatest 

deviation is noticed in the SF4 shape function. Table 3 shows the obtained values of the critical 

buckling temperature crʊ , as well as the matching with values given in the literature.  

The curves in fig. 2a, 2b and 2c are of the same nature as in the previous case. Figure. 1d clearly 

shows that with the ratio values a/h=5, a/h=10, a/b=1 and the increase of the value p, the curves 

asymptotically approach a specific value. The value of the horizontal asymptote for a rectangular plate 

depends mainly on the a/h ratio. 
 

  

а)   a/h=10 b)   a/h=5 

  

c)   a/b=1 d)   a/h=5 and a/h=10, a/b=1 

Figure 2.  Effect of the aspect ratio a/b and a/h on the critical buckling temperature crʊ  

under a linear change of temperature
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Table 3. Comparison of critical buckling temperatures ($Tcr) of rectangular FGM plates under a 

linear change of temperature across their thickness (a/h=5, a/h=10, m=n=1 and Tm=5°) 

p Source 
a/h=5 a/h=10 

a/b =1 a/b =2 a/b =5 a/b =1 a/b =2 a/b =5 

0 [27] 

[28] 

[10] 

SF 1 

SF 2 

SF 3 

SF 4 

SF 5 

SF 6 

SF 7 

SF 8 

SF 9 

SF 10 

SF 11 

SF 12 

SF 13 

--- 

--- 

--- 

11156.885 

11156.885 

11161.117 

11233.762 

11156.852 

11165.765 

11171.821 

11173.319 

11173.319 

11156.801 

11172.819 

11159.229 

11157.020 

--- 

--- 

--- 

21908.895 

21908.895 

21932.391 

22246.586 

21908.572 

21931.151 

21981.711 

21988.372 

21988.372 

21907.961 

21956.069 

21922.920 

21910.049 

--- 

--- 

--- 

46375.601 

46375.601 

46692.225 

49098.902 

46368.301 

46120.607 

47150.762 

47206.759 

47206.759 

46353.401 

46162.578 

46585.139 

46399.328 

3227.360 

3224.968 

3227.510 

3227.364 

3227.364 

3227.640 

3233.365 

3227.363 

3228.241 

3228.451 

3228.567 

3228.567 

3227.364 

3228.859 

3227.506 

3227.368 

--- 

--- 

--- 

7484.624 

7484.624 

7486.319 

7518.023 

7484.616 

7488.976 

7490.901 

7491.550 

7491.550 

7484.605 

7492.219 

7485.533 

7484.667 

--- 

--- 

--- 

25735.303 

25735.303 

25772.617 

26229.378 

25734.721 

25757.830 

25846.167 

25855.963 

25855.963 

25733.597 

25790.637 

25758.051 

25737.324 

1 [27] 

[28] 

[10] 

SF 1 

SF 2 

SF 3 

SF 4 

SF 5 

SF 6 

SF 7 

SF 8 

SF 9 

SF 10 

SF 11 

SF 12 

SF 13 

--- 

--- 

--- 

5000.989 

5000.989 

5002.635 

5030.867 

5000.976 

5004.443 

5006.798 

5007.381 

5007.381 

5000.956 

5007.186 

5001.901 

5001.042 

--- 

--- 

--- 

10114.514 

10114.514 

10124.198 

10253.490 

10114.380 

10123.687 

10144.520 

10147.264 

10147.264 

10114.129 

10133.956 

10120.295 

10114.989 

--- 

--- 

--- 

22873.951 

22873.951 

23022.805 

24151.154 

22870.518 

22754.003 

23238.207 

23264.499 

23264.499 

22863.511 

22773.750 

22972.472 

22885.109 

1412.960 

1412.023 

1413.020 

1412.968 

1412.968 

1413.071 

1415.205 

1412.967 

1413.295 

1413.373 

1413.416 

1413.416 

1412.968 

1413.525 

1413.021 

1412.969 

--- 

--- 

--- 

3320.615 

3320.615 

3321.261 

3333.348 

3320.612 

3322.275 

3323.009 

3323.257 

3323.257 

3320.608 

3323.512 

3320.962 

3320.631 

--- 

--- 

--- 

12006.476 

12006.476 

12022.180 

12214.049 

12006.231 

12015.958 

12053.121 

12057.241 

12057.241 

12005.758 

12029.762 

12016.051 

12007.327 

10 [27] 

[28] 

[10] 

SF 1 

SF 2 

SF 3 

SF 4 

SF 5 

SF 6 

SF 7 

SF 8 

SF 9 

SF 10 

SF 11 

SF 12 

SF 13 

--- 

--- 

--- 

4025.755 

4025.755 

4023.504 

4050.334 

4025.876 

4041.099 

4025.220 

4025.632 

4025.632 

4026.140 

4043.188 

4023.810 

4025.392 

--- 

--- 

--- 

7443.641 

7443.641 

7440.189 

7550.535 

7443.938 

7488.936 

7450.681 

7452.592 

7452.592 

7444.595 

7495.218 

7439.935 

7442.776 

--- 

--- 

--- 

14104.519 

14104.519 

14188.549 

15014.289 

14102.892 

14099.738 

14331.938 

14350.324 

14350.324 

14099.641 

14101.369 

14158.116 

14109.953 

1218.630 

1218.328 

1218.420 

1218.639 

1218.639 

1218.372 

1220.596 

1218.652 

1220.154 

1218.467 

1218.498 

1218.498 

1218.680 

1220.358 

1218.418 

1218.600 

--- 

--- 

--- 

2759.160 

2759.160 

2757.952 

2769.923 

2759.221 

2766.624 

2758.597 

2758.774 

2758.774 

2759.354 

2767.635 

2758.142 

2758.976 

--- 

--- 

--- 

8569.143 

8569.143 

8567.316 

8725.746 

8569.461 

8624.486 

8584.229 

8587.089 

8587.089 

8570.171 

8632.239 

8566.137 

8568.240 
 

Table 4. shows numerous values of critical buckling temperatures of rectangular FG plates 

under a nonlinear change of temperature across their thickness. There was a perfect match of the 

results for square plates under ratio values of a/h=5, a/h=10 and s=2, s=5 for all the shape functions 

with the results given in the references [10, 27, 29]. A deviation of the results for all the shape 
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functions is within the permitted limits, which can be clearly seen on the diagram showing a complete 

overlap of curves which correspond to the different shape functions. 
 

Table 4. Comparision of critical buckling temperatures ($Tcr) of rectangular FGM plates under 

a nonlinear change of temperature across their thickness (a/h=5, a/h=10, m=n=1 and Tm=5°) 

p Source 

a/h=5 a/h=10 

a/b=1 a/b=5 a/b=1 a/b=5 

s=2 s=5 s=2 s=5 s=2 s=5 s=2 s=5 

0 [27] 

[29] 

[10] 

SF 1 

SF 2 

SF 3 

SF 4 

SF 5 

SF 6 

SF 7 

SF 8 

SF 9 

SF 10 

SF 11 

SF 12 

SF 13 

16730.0 

16741.6 

16738.8 

16735.3 

16735.3 

16741.6 

16850.6 

16735.2 

16748.6 

16757.7 

16759.9 

16759.9 

16735.2 

16759.2 

16738.8 

16735.5 

33470.0 

33483.3 

33477.7 

33470.6 

33470.6 

33483.3 

33701.2 

33470.5 

33497.2 

33515.4 

33519.9 

33519.9 

33470.4 

33518.4 

33477.6 

33471.0 

--- 

--- 

--- 

69563.4 

69563.4 

70038.3 

73648.3 

69552.4 

69180.9 

70726.1 

70810.1 

70810.1 

69530.1  

69243.8 

69877.7 

69598.9 

--- 

--- 

--- 

139126.8 

139126.8 

140076.7 

147296.7 

139104.9 

138361.8 

141452.3 

141620.3 

141620.3 

139060.2 

138487.7 

139755.4 

139198.0 

4840.0 

4841.4 

4841.2 

4841.0 

4841.0 

4841.4 

4850.0 

4841.0 

4842.3 

4842.6 

4842.8 

4842.8 

4841.0 

4843.2 

4841.2 

4841.0 

9680.0 

9682.9 

9682.5 

9682.0 

9682.0 

9682.9 

9700.0 

9682.0 

9684.7 

9685.3 

9685.7 

9685.7 

9682.0 

9686.5 

9682.5 

9682.1 

--- 

--- 

--- 

38602.9 

38602.9 

38658.9 

39344.0 

38602.0 

38636.7 

38769.2 

38783.9 

38783.9 

38600.4 

38685.9 

38637.0 

38605.9 

--- 

--- 

--- 

77205.9 

77205.9 

77317.8 

78688.1 

77204.1 

77273.4 

77538.5 

77567.8 

77567.8 

77200.7 

77371.9 

77274.1 

77211.9 

1 [27] 

[29] 

[10] 

SF 1 

SF 2 

SF 3 

SF 4 

SF 5 

SF 6 

SF 7 

SF 8 

SF 9 

SF 10 

SF 11 

SF 12 

SF 13 

7450.0 

7458.6 

7457.5 

7456.1 

7456.1 

7458.5 

7500.6 

7456.1 

7461.2 

7464.8 

7465.6 

7465.6 

7456.0 

7465.3 

7457.5 

7456.2 

15280.0 

15287.8 

15285.6 

15282.8 

15282.8 

15287.8 

15374.1 

15282.7 

15293.3 

15300.5 

15302.3 

15302.3 

15282.7 

15301.7 

15285.6 

15282.9 

--- 

--- 

--- 

34103.5 

34103.5 

34325.5 

36007.7 

34098.4 

33924.7 

34646.6 

34685.8 

34685.8 

34088.0 

33954.1 

34250.4 

34120.2 

--- 

--- 

--- 

69901.7 

69901.7 

70356.5 

73804.7 

69891.2 

69535.1 

71014.8 

71095.1 

71095.1 

69869.7 

69595.4 

70202.7 

69935.8 

2100.0 

2106.8 

2106.7 

2106.6 

2106.6 

2106.7 

2109.9 

2106.6 

2107.1 

2107.2 

2107.3 

2107.3 

2106.6 

2107.4 

2106.7 

2106.6 

4310.0 

4318.2 

4318.1 

4317.9 

4317.9 

4318.2 

4324.7 

4317.9 

4318.9 

4319.1 

4319.3 

4319.3 

4317.9 

4319.6 

4318.1 

4317.9 

--- 

--- 

--- 

17900.8 

17900.8 

17924.2 

18210.3 

17900.4 

17914.9 

17970.3 

17976.5 

17976.5 

17899.7 

17935.5 

17915.1 

17902.1 

--- 

--- 

--- 

36691.1 

36691.1 

36739.1 

37325.5 

36690.4 

36720.1 

36833.7 

36846.3 

36846.3 

36689.0 

36762.3 

36720.4 

36693.7 

10 [27] 

[29] 

[10] 

SF 1 

SF 2 

SF 3 

SF 4 

SF 5 

SF 6 

SF 7 

SF 8 

SF 9 

SF 10 

SF 11 

SF 12 

SF 13 

5540.0 

5536.9 

5537.3 

5540.0 

5540.0 

5536.9 

5573.8 

5540.1 

5561.1 

5539.2 

5539.8 

5539.8 

5540.5 

5564.0 

5537.3 

5539.5 

9530.0 

9525.5 

9526.2 

9530.8 

9530.8 

9525.5 

9589.0 

9531.1 

9567.2 

9529.6 

9530.5 

9530.5 

9531.7 

9572.1 

9526.2 

9530.0 

--- 

--- 

--- 

19409.8 

19409.8 

19525.5 

20661.8 

19407.6 

19403.2 

19722.8 

19748.1 

19748.1 

19403.1 

19405.5 

19483.6 

19417.3 

--- 

--- 

--- 

33392.1 

33392.1 

33591.0 

35545.9 

33388.2 

33380.7 

33930.5 

33974.0 

33974.0 

33380.5 

33384.6 

33519.0 

33404.9 

1670.0 

1676.6 

1676.7 

1677.0 

1677.0 

1676.6 

1679.7 

1677.0 

1679.1 

1676.7 

1676.8 

1676.8 

1677.0 

1679.3 

1676.7 

1676.9 

2880.0 

2884.4 

2884.5 

2885.0 

2885.0 

2884.4 

2889.7 

2885.1 

2888.6 

2884.6 

2884.7 

2884.7 

2885.1 

2889.1 

2884.5 

2885.0 

--- 

--- 

--- 

11792.3 

11792.3 

11789.8 

12007.9 

11792.8 

11868.5 

11813.1 

11817.0 

11817.0 

11793.8 

11879.2 

11788.2 

11791.1 

--- 

--- 

--- 

20287.2 

20287.2 

20282.9 

20658.0 

20287.9 

20418.2 

20322.9 

20329.7 

20329.7 

20289.6 

20436.6 

20280.1 

20285.1 

Figure. 3c shows that the increase of nonlinearity of temperature change causes the fastest 

increase of crʊ for the value p=0. For larger p values, curves of the temperature change increase 
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somewhat more slowly, but comparing to the previous cases, there is no complete matching of curves 

when p=5 or p=10. For the value s>6, these curves start to go in the different directions and their 

separation is clearly seen. 
 

   

а)   a/h=10, s=3 b)   a/b=1, s=3 c)   a/h=10, a/b=1 

Figure 3. Effect of the aspect ratio a/b, a/h and parameter s on the critical buckling temperature 

crʊ  under ͊ nonlinear change of temperature 

5. Conclusion 

Based on the presented results, it can be concluded that the shape functions given in the tab. 1 

are acceptable for the thermo-mechanical analysis of functionally graded plates. The results obtained 

through the developed analytical procedure matched the results given in the literature. Taking into 

account the fact that shape functions have a significantly larger effect on thick and moderately thick 

plates, results are limited to ratios a/h=5 and a/h=10. This paper proves that the volume fraction of 

metal//ceramic constituents and the shape of the plate (a/b ratio), have a significantly larger effect on 

the temperature resistance than the chosen deformation theory. It is also shown that the biggest 

deviations occur when the value of the parameter p is low, while the increase of the value p causes the 

differences between the critical temperatures to be reduced or completely vanish. Separation of the 

curves, which correspond to the greater values of the parameter p, occurs with the increase of 

nonlinearity of a temperature change, namely with the increase of the s parameter. 
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