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The motion of liquids and gases can be either laminar, flowing slowly in orderly 
parallel and continuous layers of fluid that cannot mix, or turbulent in which mo-
tion exhibits disorder in time and space with the ability to promote mixing. 
Breakdown of ordered to disordered motion can follow different scenarios so that 
no universal mechanism can be identified even in similar flow configurations [1]. 
Only under very special circumstances can the mechanism associated with the 
appearance of turbulence be studied within the deterministic theory of hydrody-
namic stability [2] or employing direct numerical simulations [3] which them-
selves cannot provide the necessary understanding [4]. Here we show that the 
representative mechanism responsible for the origin of turbulence in wall-
bounded flows is associated with large variations of anisotropy in the disturb-
ances [5]. During the breakdown process, anisotropy decays from a maximum 
towards its minimum value, inducing the explosive production of the dissipation 
which logically leads to the appearance of small-scale three-dimensional mo-
tions. By projecting the sequence of events leading to turbulence in the space 
which emphasizes the anisotropic nature in the disturbances [6], we explain why, 
demonstrate how and present what can be achieved if the process is treated ana-
lytically using statistical techniques [7]. It is shown that the statistical approach 
provides not only predictions of the breakdown phenomena which are in fair 
agreement with available data but also requirements which ensure persistence of 
the laminar regime up to very high Reynolds numbers. 
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Introduction 

Since its accidental discovery [8] over 50 years ago, it is known that the most com-
mon and therefore representative scenario of breakdown of the laminar regime to turbulence 
in simple wall-bounded flows proceeds intermittently in the form of randomly appearing spots 
of turbulence as shown in fig. 1. The spots move slightly slower than the main stream and 
maintain their specific arrowhead shape, which can be clearly distinguished in flow visualiza-
tion experiments [9-11]. In front of a spot, where the flow is still laminar, highly elongated 
flow patterns extending nearly to the size of the shear layer (L) are observed. These patterns 
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are usually termed streaks [12] in the literature. The streamwise streaks have a large length to 
width ratio and therefore are highly anisotropic. 

 

Figure 1. Statistical interpretation of the breakdown leading to turbulence [10] and its projection on 
the anisotropy-invariant map; the influence of anisotropy in the disturbances is reflected in the evolu-
tion of spectral separation L/ηk in the flow; (a) Evolution of the turbulent spot at low Reynolds number 
reveals only a moderate level of anisotropy at the spot center and therefore only noticeable L/ηk, (b) As 
the Reynolds number increases, the level of anisotropy progressively decreases in the core region of the 
spot, which increases L/ηk (for color image see journal website) 

The visual impression suggests that the streak pattern is statistically axisymmetric 
and corresponds to a system which is invariant under rotation about the axis aligned with the 
main flow. Downstream of the front side and towards the center of the spot, anisotropy de-
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creases and is accompanied by the appearance of small-scale random motions which show 
nearly no preference for orientation in any specific direction. At the spot center, the patterns 
are almost isotropic, particularly at large Reynolds number, as can be seen from fig. 1(b). The 
sudden appearance of small-scale random motion implies that rapid decrease in anisotropy 
provokes explosive growth of the dissipation,  / )/( /i j j i j ie v u x u x u x        , which signif-
icantly reduces the smallest scale of motion defined by Kolmogorov’s length scale,  
k = (v3/)3. In this way, an energy cascade is initiated, which promotes the spectral separation 
(L/k) which is the essential feature of turbulence.  

Further downstream towards the back side of the spot, where reverse transition from 
the turbulent to the laminar state occurs, anisotropy increases, leading to the reappearance of 
streaky patterns similar to those observed at the front side of the spot. This evidence indicates 
considerable similarity between the mechanisms associated with forward and reverse transi-
tions and the role which anisotropy plays in the dynamics of the dissipation process, which 
can only be understood using statistical techniques. The origin of turbulence in wall-bounded 
flows can be further analyzed by looking into the evolution of anisotropy in the apparent 
stresses i ju u , which can be quantified using the anisotropy tensor [6] defined as 

2/ 1 / 3ij i j ija u u q     (where q2 = s su u ) and its scalar invariants II = aijaji and III = aijajkaki. 
A plot of II vs. III for axisymmetric disturbances, II = 3/2(4/3|III|)2/3, and two-component dis-
turbances, II = 2/9 + 2III, defines the anisotropy-invariant map shown in figs. 1(a) and 1(b) 
(right), which bounds all physically realizable disturbances [6]. The two curves in this figure 
represent axisymmetric disturbances. The right-hand curve corresponds to disturbances with 
the streamwise intensity component larger than in the other two directions, 2 2 2

1 3 2u u u    
(III > 0), and the left-hand curve corresponds to axisymmetric disturbances with 

2 2 2
1 3 2u u u  (III < 0). Along the straight line reside two-component disturbances. The limit-

ing states of disturbances are located at the corner points on the right- and left-hand sides of 
the anisotropy-invariant map and correspond to one-component disturbances and isotropic 
two-component disturbances, respectively. Simple trajectories of joint variations of invariants 
across the anisotropy-invariant map which interconnect large variations of anisotropy during 
forward and reverse transitions are sketched in figs. 1(a) and 1(b) (right). These trajectories lie 
very close to the right-hand boundary of the map and suggest that the corresponding disturb-
ances may be assumed to be axisymmetric with III ≥ 0.  

This conjecture was verified experimentally by measuring anisotropy and its scalar 
invariants in a specially designed test facility in which spots were generated periodically in a 
laminar pipe flow.  

Instrumentation and experimental results 

Figure 2 shows experimental results which confirm the axisymmetric nature of the 
disturbances with large variations of anisotropy starting from its maximum value, which cor-
responds to the one-component state, towards the nearly isotropic state and vice versa during 
forward and reverse transitions, respectively. In providing further support for the above-
discussed peculiarities of the processes involved during laminar-turbulent transitions, an im-
portant role is played by numerical simulations, which offer a physical understanding if the 
results are cast into an anisotropy-invariant map [7]. 

Examination of anisotropy maps of turbulence utilizing numerical databases [13-17] 
of fully developed channel flow at low and moderate Reynolds numbers shown in fig. 3 sug-
gest that invariants in the region very close to the wall, which must lie along the two-
component limit, tend to move towards the right corner point of the map, which corresponds 



Jovanovi}, J. R., et al.: The Origin of Turbulence in Wall-Bounded Flows 
S568  THERMAL SCIENCE, Year 2017, Vol. 21, Suppl. 3, pp. S565-S572 
 

to the one-component state, as the critical Reynolds number for breakdown to turbulence is 
approached, Re → (Re)crit. For this special situation, which is the realistic state of the disturb-
ances preceding breakdown to turbulence, theoretical considerations and numerical simula-
tions show that the dissipation rate must vanish at the wall [18], wall → 0. This fundamental 
deduction implies that as long as the disturbances assume the one-component state at the wall, 
the flow will remain laminar since the energy of the disturbances (k = 1/2q2) cannot be ampli-
fied since k grows as k → 2

wall 2( / ) /2v x  as the wall is approached, x2 → 0. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Figure 2. Experimental verification of the axisymmetric nature of the disturbances during forward and 
reverse transitions in a laminar pipe flow; (a) Experimental set-up for measurements of ensemble-
averaged records of fluctuating velocity components aligned with the triggering signal used to activate 
the iris diaphragm which produced turbulence spots under well controlled conditions, (b) Traces of 
joint variations of invariants obtained from ensemble-averaged hot-wire signals sampled during the 
sequence of events leading to forward (A-B) and reverse (B-C) transition (for color image see  
journal website) 

The results of the invariant analysis shown in fig. 3 suggest that the stable laminar 
regime, which is fixed to the one-component state located at the wall, can be broken down to 
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turbulence only by decreasing the anisotropy at the outer flow boundary II∞ below the critical 
value (II∞)crit, which is dictated by the  equation. These results further suggest that only a de-
crease in II∞ below (II∞)crit can induce a similar decrease in (II)wall along the two-component 
limit of fig. 3, which ensures amplification of the disturbances (as wall > 0) necessary to pro-
mote transition to turbulence. By extrapolation of the trend in the results of fig. 3 correspond-
ing to the region around the channel centerline, the critical value (II∞)crit ≃ 0.14 is obtained. 
From fig. 3, we may conclude that for (II)wall = (II)1C = 2/3 and II∞ > (II∞)crit, the laminar re-
gime can persist up to very high Reynolds numbers. Following the deductions obtained from 
the results presented in figs. 1 and 3, we may attack the transition problem analytically using 
the Navier-Stokes and continuity equations. 

 

 
Figure 3. Anisotropy-invariant mapping of turbulence in a channel flow: ᇞ [13], ◇ [14], ⨞ [15], ○ [16], 
and ᇝ [17]; data which correspond to low Reynolds number show the trend as Re → (Re)crit towards 
the theoretical solution valid for small, neutrally stable, statistically stationary axisymmetric disturb-
ances; the shading on the right-hand boundary of the map indicates the area occupied by the stable dis-
turbances: for such disturbances it is expected that the laminar regime in a flat plate boundary layer 
will persist up to very high Reynolds numbers (for color image see journal website) 
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By splitting instantaneous velocity and pressure fields into the mean-laminar flow 
and random disturbances ui and p superimposed on it and assuming that the disturbances are 
small, transport equations for the statistical properties of the disturbances are obtained [5]. 
These equations are, however, not closed. For the case of axisymmetric disturbances, such as 
those marked with shading in fig. 3, the closure problem can be overcome on firm mathemati-
cal grounds utilizing the two-point correlation technique and the invariant theory [7, 19, 20]. 
Using the closure proposals suggested for such disturbances, after lengthy derivations the 
transport equations for the apparent stresses i ju u  and the dissipation rate  emerge in a closed 
form: 
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where Ui represents the velocity field of mean-laminar flow, xi is the space coordinate, 
/ /ij i j j j kk i kP u u U x u u U x        can be interpreted as the production of i ju u and F, A and 

 are the scalar functions that depend on the invariants II and III and the Reynolds number  
R = q/v based on the Taylor micro-scale , which is related to  by  ≃ 5vq2/2.  

If we consider transition of the Blasius flow [21] in a flat plate boundary layer, the 
energy equation (which is obtained by contraction of the equations for i ju u ) immediately 
suggests stability towards small disturbances if the production Pk = Pss/2 is balanced by the 
dissipation Pk ≃ .  

The equilibrium constraint leads to the energy equation, which is of boundary layer 
character [20] and does not allow amplification of statistically stationary disturbances in the 
boundary layer above corresponding values of the free stream. Inserting Pk ≃ h into the dis-
sipation rate equation and requiring that the dissipation rate must be always non-negative  
   0 (to satisfy realizability [6]) and at the critical point follows the energy (as emerges from 
the conjecture [22]  ≃ Aq3/l), we deduce the transition criterion 2A    0 in terms of the 
Reynolds number (R)T and the anisotropy in the disturbances.  

For a certain magnitude (II) and character (III) of the anisotropy, the derived transi-
tion criterion suggests permissible magnitudes for the intensity and the length scale of dis-
turbances R → (R)crit that guarantee Pk ≃  with   0 and therefore maintenance of the lam-
inar flow regime in a flat plate boundary layer. Using expressions constructed analytically [7, 
20] for the scalar functions A and , it is easy to prove from 2A   = 0 that breakdown to 
turbulence can be avoided completely if the anisotropy in the free stream disturbances is suf-
ficiently large, II∞  0.141. The trends in the numerical results of fig. 3 as Re → (Re)crit indi-
cate that these tend towards the above-mentioned analytic result very closely and therefore 
provide support for the theoretical considerations. For vanishing anisotropy in the free stream 
disturbances, II∞ → 0, for which all experiments have been carried out from 2A   = 0, we 
infer the transitional Reynolds number (R)T = 13.55.  

In order to translate (R)T into (Rex)T , the relation between the Taylor micro-scale  
and the boundary layer thickness  is required. Using the exact expression  = 101/2x2, which 
holds, however, only very close to the wall [23], the average value of   across the boundary 
layer can be related to  as 1/210 / 2  .  
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Conclusions 

Figure 4 shows that the previous result for (R)T together with the suggested approx-
imation for  predicts the variation of the transition Reynolds number with the relative inten-
sity of the free stream disturbances in fair agreement with the experimental data [24-28] ob-
tained under well-controlled laboratory conditions. The presented results show that it is possi-
ble to approach the breakdown of the laminar regime to turbulence from a statistical view-
point. This approach reveals that the breakdown to small scales is caused by large variation in 
the anisotropy of the disturbances. The qualitative analysis of the transport equations for the 
statistical properties of small disturbances allows a prediction of the transition Reynolds num-
ber in a boundary layer flow in terms of the relative turbulence intensity in the free stream and 
its anisotropy. 

 
Figure 4. Comparison of experimental data with the prediction of the effect of free-stream disturbances 
on boundary layer transition; (Rex)T = xU∞/n is the transition Reynolds number based on distance x 
from the leading edge of the plate, U∞ corresponds to the velocity of the free stream, n is the kinematic 
viscosity of the fluid and 2 0.5( ) /u U  represents relative intensity of turbulence in the free stream: 
 • [24], ᇞ [25], ○ [26], ᇝ [27], ◇ [28], ------ prediction of transition and breakdown to turbulence for van-
ishing anisotropy in the disturbances (II = III → 0) 
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