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Heat conduction in solids subjected to non-homogenous boundary conditions 
leads to singularities in terms of heat flux density. That kind of issues can be also 
encountered in various scientists’ fields as electromagnetism, electrostatic, elec-
trochemistry, and mechanics. These problems are difficult to solve by using the 
classical methods such as integral transforms or separation of variables. These 
methods lead to solving of dual integral equations or Fredholm integral equations, 
which are not easy to use.
The present work addresses the calculation of thermal resistance of a finite medi-
um submitted to conjugate surface Neumann and Dirichlet conditions, which are 
defined by a band-shape heat source and a uniform temperature. The opposite sur-
face is subjected to a homogeneous boundary condition such uniform temperature 
or insulation.
The proposed solving process is based on simple and accurate correlations that 
provide the thermal resistance as a function of the ratio of the size of heat source 
and the depth of the medium. A judicious scale analysis is performed in order to 
fix the asymptotic behaviour at the limits of the value of the geometric parameter.
The developed correlations are very simple to use and are valid regardless of the 
values of the defined geometrical parameter.
The performed validations by comparison with numerical modelling demonstrate 
the relevant agreement of the solutions to address singularity calculation issues.
Key words: non-homogeneous boundary conditions, analytical modelling,  

heat conduction with singularities, asymptotic behaviour,  
simple correlations

Introduction

Heat conduction problems are usually solved in the literature by using analytical or 
numerical models. The most popular analytical methods are based on the integral transforms 
such as Fourier, Hankel, and others [1-5] or integral methods as heat balances [6, 7]. These 
analytical solutions can be easily deducted when the boundary conditions on the same surface 
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are homogeneous. The cases of non-homogeneous boundary conditions are more complex to 
achieve, for instance, coupled Dirichlet and Neumann on the same surface lead to singularities 
in terms of heat flux.

These issues are commonly encountered in various scientists’ fields as heat transfer, 
electromagnetism, electrostatic, electrochemistry, and mechanics. Several studies were devel-
oped in the literature to resolve these problems [8, 9]. The authors derive solutions under integral 
form such as the called Dual integral equations, or under imbricated Fredholm integral equa-
tions, which require iterative numerical solving. Collins [10] has studied the potential problem 
for a circular annulus. He performed analytical developments for the axisymmetric case using a 
superposition technique. The solutions are given under Fredholm integral equations.

Thus some authors addressed the case of Dirichlet condition on an annular disc that 
involves Bessel’s functions. The solutions lead to a triple dual integral equations corresponding 
to the three distinctive parts of the surface: the inner circle, the ring-shaped area, and the outer 
surface. Cooke [11] has proposed different solutions for the triple integral equations. These 
solutions lead to Fedholm integral equations as that obtained by Collins [10].

Further, Fabrikant [12] considered the Dirichlet problem taking into account the 
non-axisymmetric. The deducted solution is also under Fredholm’s integral equation form. The 
kernel of this integral equation is non-singular and so can be solved by an iterative method. No 
general solutions to these problems have been attempted yet.

Recently, two different Dirichlet problems were investigated [13]: 
–– an annular disc subjected to a Dirichlet condition, with a uniform temperature, when the 

remaining surfaces are insulated, and
–– an isothermal annular disc, with zero temperature, when the inner surface is subjected to a 

uniform heat flux and the outer surface is insulated. 
A judicious approach is proposed to determine the thermal resistance through the 

annulus. The principle of this method consists on the modelling of the asymptotic behaviours 
under their most compact form and then the use of a correlation technique to connect them. The 
provided solutions are compact and their predictions are in excellent agreement with available 
data of Smythe [8] and Cooke [9].

Moreover, for various problems of conduction involving singularities, it can be more 
practical to use the conformal mapping method that is based in the Schawrz-Christoffel trans-
formation [14].

The present work focuses in the steady-state calculation of 2-D thermal resistance of a 
finite medium subjected to a band-shape heating source and a uniform temperature on the same 
surface. Thus Neumann and Dirichlet conditions are simultaneously applied. The opposite sur-
face is subjected to various homogeneous boundary conditions such as uniform temperature or 
insulation. Simple and accurate correlations are established that provide the thermal resistance 
as a function of the ratio of the size of heat source and the depth of the medium. Validations by 
comparison with numerical modelling show that the promoted solutions are in good agreement.

Studied problem

The study is a finite medium, having a thickness c, shown in fig. 1, which is subject-
ed to a band heat source, φc, on the area (|x| ≤ a, y = 0) and an uniform reference temperature  
T = 0 on the remain of the same surface (|x| > a, y = 0). For the opposite face (i. e., y = c) we 
consider two configurations: (1) the surface is isothermal with the reference temperature T = 0 
and (2) adiabatic.



Laraqi, N., et al.: Simple and Accurate Correlations for some Problems of Heat Conduction ... 
THERMAL SCIENCE: Year 2017, Vol. 21, No. 1A, pp. 125-132	 127

Due to the singularity in terms of heat flux density at the abscissa |x| = a, (y = 0), the 
resolution is difficult using the classical methods. Indeed, the heat flux density near these two 
abscissae becomes infinity.

Several methods can be used to try the solving of this problem such as conformal 
mapping, green’s functions, dual integral equations, Fredholm integral equations, and finally 
numerically. All these methods reclaim complicated as well as heavy calculations.

In order to calculate the thermal resistance of this problem, we suggest a simple ap-
proach, which is based on the analysis of the asymptotic behaviour according the ratio (a/c) and 
the use of a powerful correlation.

The definition of the thermal resistance is given by:

	 0c
c

c

T T
R

φ
−

= 	 (1)

where Tc and ϕc are the average temperature and heat flux of the contact area, respectively, and 
T0 is the reference temperature. Here, we have ϕc = 2aφc and T0 = 0.

The aim is to promote user-friendly correlations that can be defined by engineers in 
various industrial fields without solving the governing equations.

Analytical model developments

Governing equations

The governing equation of both problems described in fig. 1 is:
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The boundary conditions are given by:
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Figure 1. Studied conduction cases



Laraqi, N., et al.: Simple and Accurate Correlations for some Problems of Heat Conduction ... 
128	 THERMAL SCIENCE: Year 2017, Vol. 21, No. 1A, pp. 125-132

The next sections present the following elements of the resolution-problem process: 
–– the asymptotic behaviour according with both boundary conditions of (4) and
–– the correlations and their validations.

Analysis of the asymptotic behaviours

–	 Case of isothermal surface T(x,y = c) = 0

The asymptotic behaviour when the depth-source length ratio (c/a) tends to infinity is 
well known in the literature [15]. In this case, the thermal resistance can be written:

	 *
, ( / )

8c cR R c aλ∞
π

= →∞ = 	 (5)

The approach is done when the length ratio 
is close to zero, corresponding to a very low value 
of c as displayed in fig. 2.

In this peculiar case, it is easy to note that the 
thermal resistance is a simple resistance of a wall, 
which is given by:

	 *
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2c c
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–	 Case of adiabatic surface (∂T/∂y)x, y = c = 0
When the depth-source length ratio (c/a) tends to infinity, the solution is the same that the 

previous case. Then the thermal resistance is given by eq. (5).
At the opposite, when the length ratio is close 

to zero, we consider the schema given by the fig. 3.
The energy balance for an elementary 

surface (black cell) between the abscissa x and  
x + dx, can be written:
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That leads to:
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Considering the following boundary conditions:
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The solution of eq. (8) is easy to determine. We obtain:
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Figure 2. Asymptotic beaviour when c → 0 
for isothermal condition at y = c 
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That allows determining the average temperature of the contact area:
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By using the definition of the thermal resistance given by eq. (1), we deduce the as-
ymptotic behaviour for c/a → 0 such:
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Correlations

At first, the length ratio a/c is fixed as the key parameter of the relationship.
In order to define a compact expression of Rc, that will be valid regardless of the value 

of a/c, Churchill and Usagi [16] correlation is used.
In this method the following relationship is derived: Y = (1 + Zn)1/n where Y and Z are 

expressed in terms of the solutions for asymptotically large and small values of the independent 
variable (here, a/c). This correlation is valid for processes with monotonic variation over the 
entire extent of variation of the parameter (here a/c). This is the case of the studied thermal 
resistances. The arbitrary exponent n can be evaluated simply by comparison to some known 
points which are given experimentally or numerically (they are numerically in our study). The 
exponent n has a positive sign when the function is concave up and a negative sign when the 
function is concave down.

This kind of correlation is equivalent to write:
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Then, the correlation form is given:
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By applying this correlation method to our problem, a dimensionless expression of the 
thermal resistance is established:

	
1/

* *
,0

81
8

nn

c cR R
 π  = +  π   

	 (15)

According with both boundary condition cases, the specific dimensionless expression 
can be deducted: 
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Results and discussions

According with the eqs. (16) when the depth tends toward zero (c → 0), the thermal 
resistance becomes zero for the isothermal condition and infinity for adiabatic condition, which 
is evident. So to be coherent with the asymptotic behaviours, the exponent n have to be negative 
and the exponent m positive.

To determine the values of n and m, we have solved numerically the problem for both 
boundary conditions considering the symmetry at x = 0. We considered only two values of the 
ratio a/c. To obtain accurate results, the mesh was refined in the vicinity of the singularity (x = a).

These two points allow us to deduct the first values of n and m. We have adopted these 
values and performed the numerical calculation for others values of the ratio a/c. We show that 
the first values of n and m are valid for all the other ratios a/c. The initial values of n and m can 
be slightly adjusted to obtain more precise values of Rc by minimization of the relative differ-
ence between the correlation and the numerical modelling over the changing in the ratio a/c.

Figure 4 presents the changes 
in the relative difference between 
the numerical modelling and cor-
relations as a function the expo-
nents n and m. It is clear that there 
is an optimal value of the expo-
nent for both studied boundary 
conditions. The relative differ-
ence seems to be highest for the 
adiabatic case.

The results for the case of 
isothermal condition are giv-
en in fig. 4. The optimal value 
of the exponent is found to be  
n = –1.623. The relative difference 
between the correlation and the 
numerical modelling is near 3%, 
tab. 1.

Table 2 displays the resultats 
for the case of adiabatic condi-
tion. The optimal value of the ex-
ponent is found to be m = 1.380. 
The relative difference between 
the correlation and the numerical 
modelling is also near 3.73%.

Figure 5 shows, for both 
boundary conditions, the chang-
es in the dimensionless thermal 
resistance as a function of the 
ratio a/c in a logarithmic scale. 
The continuous curves are the 
correlations and the dotted are the 
numerical results.
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Both curves start from R*
c = π/8 which is the common value for a/c → 0 and then separate to 

move towards zero for the isothermal case, and infinity for the adiabatic one.
The tendencies when a/c → ∞ can be derived from the asymptotic behaviours given 

by eq. (6) for the isothermal case and eq. (12) for the adiabatic one. The slopes of curves are 
–1/2 and 1/6, respectively.

Conclusions

Some problems of heat conduction involving singularities in term of heat flux density 
were considered in this paper. These singularities are due to non-homogeneous boundary con-
ditions that are applied simultaneously on the same surface. Simple and accurate correlations 
were proposed to determine the thermal resistance as a function of a characteristic geometric 
parameter based on depth-source length ratio.

The proposed correlations were validated by comparison with numerical computa-
tions. Their maximum relative differences are less than 4%. The established correlations are 
designed to be practical for engineers. Indeed they permit a very comprehensive calculation 
of the thermal resistance without a complicated numerical computing to carefully account the 
singularities phenomena.

Moreover, the present analysis can be easily extended to other calculation domains 
such as the capacitance for electric problems or the current for electrochemistry problems.

Furthermore, the developed correlations are relevant over all the range of variation of 
the geometric parameter without any restriction.

Nomenclature

Table 1. Comparison between numerical 
modelling and the correlation (isothermal case)

 
a/c

Rc
*  

Relative  
differenceNumerically Correlation

(n = –1.623)
0.020 0.3903055 0.3924136 0.54%
0.050 0.3917005 0.3914400 0.07%
0.200 0.3857795 0.3811636 1.21%
0.250 0.3823850 0.3764012 1.59%
0.500 0.3577245 0.3475282 2.93%
1.000 0.2927795 0.2857121 2.47%
2.000 0.1955403 0.1963104 0.39%
3.333 0.1300140 0.1333969 2.54%
5.000 0.0910858 0.0938451 2.94%
10 0.0487475 0.0489438 0.40%

Table 2. Comparison between numerical 
modelling and the correlation (adiabatic case)

 
a/c

Rc
*  

Relative 
differenceNumerically Correlation  

(m = 1.380)
0.020 0.3921500 0.3930934 0.24%
0.050 0.3925100 0.3940949 0.40%
0.200 0.3952300 0.4021177 1.71%
0.250 0.3970100 0.4054936 2.09%
0.500 0.4114900 0.4256863 3.33%
1.000 0.4595800 0.4766320 3.58%
2.000 0.5952900 0.6006413 0.89%
3.333 0.8013500 0.7878856 1.71%
5.000 1.0720300 1.0380249 3.28%
10 1.8962900 1.8280486 3.73%

a	 –	 half-width of the heat source, [m]
c	 –	 wall thickness, [m]
Rc	 –	 thermal resistance, [mKW–1]
Rc

*	 –	 dimensionless thermal resistance, (= λRc), [–]
T	 –	 temperature, [K] or [0C]
x, y	–	 Cartesian co-ordinates, [m]

Greek symbols

λ	 –	 thermal conductivity, [Wm–1K–1]
φ	 –	 heat flux density, [Wm–2]

Subscripts

c	 –	 contact (here the heat source area)
0	 –	 for the reference temperature
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