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Two classes of rational solutionsto a shallow water wave-like non-linear differen-
tial equation are constructed. The basic object isa generalized bilinear differential
equation based on a prime number, p = 3. Through this new transformation and
with the help of symbolic computation with MAPLE, both the new equation and its
rational solutions are obtained.
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Introduction

In recent years, there has been a growing interest in non-linear differential equations,
which are used to describe the mechanical, process control, ecological and economic systems,
chemical re-cycling system and other areas of epidemiology issues[1, 2].

Shallow water wave equation is a mathematical description of awide variety of shal-
low water fluid motion [3, 4]. In the research of shallow water equations, how to get the rational
solutionsisvery important, however, the difficulty increasesdueto itsnon-linearity. If more ex-
act solutions can be obtained through a simple way, a wide application are predicted [5-7].

In this paper, wewould like to consider ashallow water wave-like non-linear differen-
tial equation induced from a generalized bilinear differential equation of shallow water wave
type[8, 9]. Based on the original shallow water wave equation, anew bilinear transformationis
considered. Then through the dependent variable transformation, we get the shallow water
wave-likeequation[10, 11]. From aclass of polynomial generating functions, aMAPLE search
tells us six classes of rational solutions to the considered shallow water wave-like equation,
along with some special interesting solutions. A conjecture on rational solutions to the consid-
ered shallow water wave-like equation is made at the end of the paper.

A shallow water wave-like equation

Let usconsider ageneralized bilinear differential equation of shallow water wave-like
type:
(DD, - D2 -D,D,)ff =6f, f, +2f f -2f2 +2f f -2f, f, =0 Q)
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Thisisthe sametype bilinear equation as the shallow water wave one[12]. The previ-
ousdifferential operatorsare somekind of generalized bilinear differential operatorsintroduced
in[13]:

0 o \"( o oY L
Dm, Do ff =(&+ap§] (EWPEJ f 60 F O, )y et )

wherea§ = (-1)"9, s=r(s) mod p.
In particular, we have:
az=-Laz=lal=laj=-Laj=Lal=-1 3
and thus
D3 Ds ff =6f, f, D ff =2f,f —2f2, Dy ,Ds ff =2f, f -2f, f, 4
Inthe case of p=2,i. e, the Hirota case, we have:
D3 Dy ff =2f o F +6f 4 fe —6f 0 fx —2f Ty
DZ ff =2f,f -2f2 D, D, ff =2ff -2ff,
which generatesthe standard bilinear [14] shallow water wave equation. Under thelink between
fand u[15, 16]:
u=(nf), (6)

and then the result of these transformation can directly show that the generalized bilinear eqg. (1)
islinked to a shallow water wave-like scalar non-linear differential equation:

()

g(jutdx)u3 +%(Iuth)UUx +§1rutu2 +:—;ut u,+u +u, =0 (7

Because of the new equation is result from the transformation based on the bilinear
formsof theoriginal shallow water wave equation, it is called the shallow water wave-like equa-
tion. More precisely, by virtue of the transformation (6), the following equality holds:

(D3D, - D2 - D,D,)ff

f2
and thus, f solves eg. (1) if and only if u = (Inf), presents a solution to the shallow water
wave-like eg. (7). Resonant solutions in term of exponential functions and trigonometric func-
tions[17] have been considered for generalized bilinear equations. In this paper, we would like

to discuss their polynomial solutions which generate rational solutionsto scalar non-linear dif-
ferential equations by focusing on the shallow water wave-like eg. (7).

:g(jutdx)u3 +%(jutdx)uux Jr%utu2 JrgutuX +u +u, (8

Rational solutions

By symbolic computation with MAPLE, we look for polynomial solutions, with de-
grees of x and t being less than 10: o 10
f=3> gxtl ©)
i=0j=0
where the ¢; are constants, and find many classes of polynomial solutions to the generalized
bilinear equation. Among these solutions, we selected six solutionswhich hold arelatively sim-
ple form into consideration:

2 2
f:_%x?’—%xz +4C1—C;t+12021t—4cl—(;x+%0 (10)
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f ==3C3tX? + CypX? + Cypt 2 — 2C,otX + Cyox2 —3t2 +
2

c2 C
+ Gyt 2 —3it—36(‘,30t+3%0t2x+3ix+c00

. . (11)
2 1 1 1 2
f =cyt® +=Cpt8 + =120, + = tx+ =yt + = Cppt2x 12
Cs0 9012 9 Cu 3011 3C01 3012 (12)
f =cyt5 + ¢y x*t +12c,,t3 +6C,t3x2 —36C,, X2 +
1 1
f :Ec@t6 +§c42t5x+2042t3x3 +Cppt2Xx4 +3c,t4 —
—12¢,,t3X — 36C,,t2x2 —108C,t2 (14)
f =y t3 —CyyXt2 + ¢y tx2 —%cﬂx3 +2C,t2 —
cz cz
—2CtX + CpX? + -2t +12¢,t — -2 X + Gy (15)
1 1

where the involved constants ¢;; 's are arbitrary provided that the solutions make sense.

Taking the concrete forms of the resulting polynomial solutions (10)-(15) into
consideration, we can obtain six classes of rational solutionsto the shallow water wave-like eq.
(7) with the help of MAPLE:

Ue - 6(4a2x + 4abx + b?)

—4a?2x3 —6abx? +144a2t + 3b2t —3b2x +12ac
Ue — 18t2 — 36tx +18x2 + 480t — 480x + 3200 (17)
Ot3 —9Ot2x + 9tx2 —3x3 +240tx +120x2 + 1708t —1600x

16t3 +96t2x +192tx? +128x3 — 384t — 2304x

(16)

u= 18
t4 4+ 8t3x + 24t 2x2 + 32tx3 +16x4 + 48t2 —192tx —576%x2 —1728 (18)
2
U 12at2 + 6bt (19)
9ct 3 + 9at 2x + 6dt 2 + 3btx + 3et — 3axt2 + 2at3 + bt2
3 2 2 3 _ —
8t3 +24t2x + 24tx2 + 8x°3 — 48t —144x (20)

U=
t4 4+ 4t3X +6t2x2 + 4tx3 + x4 +12t2 — 24tx — 36x2 —108

6(a?t? —2a2tx + a?x? + 2abt — 2abx + b?)
3a?2t3 —3a?t2x + 3a?tx? — a?x® + 6abt2 — 6abtx + 3abx? + 36a2t + 3b%t —3b?x + 3ac
(21)
where a, b, ¢, d, and e are arbitrary constants. Actually, the polynomial solutions in the first
group of (10)-(15) generate the rational solutionsin (16)-(21). Note that in (16)-(21), the con-

stants were rescal ed and renamed. Pictures of the solution (17), (18), and (20) aregiveninfig. 1.
The rational solutions (16), on one hand, reduced to:
6x2 +60x +150

—x3 —15x2 +111t — 75x
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Figure 1. Therational solution: (a) eg. (17); (b) eg. (18); (c) eq. (20)
(for color image see journal web-site)
whena=1, b=10, and c = 0. On the other hand, the rational solutions (19) reduces to:

12t +6

= (23)
11t2 +6tx +t +3x

Figure 2. Therational solution: (e) eq. (22); (f) eq. (23); (9) eq. (24)
(for color image see journal web-site)
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Figure 3. The x-curves of solutions (22) and (24): (a) eg. (22); (b) eq. (24)



Ma, H.-C., et al.: Rational Solution to a Shallow Water Wave-Like Equation
THERMAL SCIENCE: Year 2016, Vol. 20, No. 3, pp. 875-880 879

whena=1,b=1,¢c=1,d=0,and e=0. Therational solutions (21) reduces to:

6(t2 —2tx + X2 +2t —2x +1)
3t3 - 3t2x +3tx2 — X3 +6t2 —6tx +3x2 + 39t —3x

u=-— (24)

whena=1,b=1, andc=0. Picturesof the solution (22)-(24) aregiveninfig. 2. The x-curves of
solutions (22) and (24) are depicted infig. 3.

Conclusions

We considered a generalized bilinear equation which yields a shallow water wave-
-like equation [18], and constructed the rational solutions to the resulting shallow water
wave-like eg. (7). By a MAPLE symbolic computation, we presented six classes of the con-
structed rational solutions. The basic starting point isakind of generalized bilinear differential
operators introduced in [19].

It isworth checking if there exists a kind of Wronskian solutions and lump solutions
[20] to the shallow water wave-like non-linear eg. (7). We al so conjecture that the six classes of
rational solutions in (16)-(21) which generated from polynomial solutions to the generalized
bilinear eq. (7) under the link (6) would contain al rational solutions to the shallow water
wave-like nonlinear eq. (7).
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