THERMAL PROPERTIES AND WATER REPELLENCY OF COTTON FABRIC PREPARED THROUGH SOL-GEL METHOD

by

Jia-Li GU^a, Qiang-Hua ZHANG^a, Yun-Bo CHEN^a, Guo-Qiang CHEN^a, and Tie-Ling XING^{a,b*}

^aCollege of Textile and Engineering, Soochow University, Suzhou, China ^b Jiangsu HuaJia Group, Suzhou, China

> Original scientific paper DOI: 10.2298/TSCI1603863G

Cotton fabrics were treated by one-step sol-gel method. The pure silica hydrosol and phosphorus-doped hydrosol were prepared with the addition of a hydrophobic hexadecyltrimethoxysilane to decrease the surface energy of cotton fabric. The thermal properties and water repellency of treated cotton fabric were characterized by thermo-gravimetric analysis, micro combustion, limiting oxygen index, and contact angle measurement. The results showed that cotton fabric treated by phosphorus-doped silica hydrosol had excellent flame retardance, and the water repellence was apparently improved with the addition of hexadecyltrimethoxysilane.

Key words: cotton fabric, thermal properties, water repellency, sol-gel method, phosphorus-doped

Introduction

As a significant natural fiber, cotton is used in a large range of applications such as T-shirt, curtain and beddings [1]. The reasons why cotton appeals consumers' appetite are its excellent properties, including softness, air permeability, hygroscopicity, and comfortableness. However, some drawbacks confine its further application and development. On the one hand, it can be easily ignited and rapidly burns out, which may cause fire disaster and threaten people's life and wealth. On the other hand, the concentrated hydroxyl groups on cotton surface make the fabrics easily be stained by dirty water. Consequently, it is necessary to improve the flame retardance and hydrophobicity of cotton fabrics for some specific application.

As an effective surface modification technology, sol-gel method can endow textiles with water repellency, flame retardancy, UV protection and antimicrobial property, which has been proved by the researchers' massive investigations [2-5]. In order to improve the flame resistance and hydrophobicity of cotton fabric, a one-step sol-gel process was used in this work. The pure silica hydrosol and phosphorus-doped silica hydrosol was prepared via sol-gel method with methyltrimethoxylsilane and tetraethoxysilane as precursors and ammonium biphosphate as an additive in the presence of acid catalyst and cationic/nonionic surfactants in aqueous solution. Then, the synthesized sol was modified by hexadecyltrimethoxysilane (HDTMS) to decrease the surface energy of cotton fabric. The cotton fabric was dipped and padded with the prepared hydrosol and cured under suitable temperature. The thermal property, combustion

^{*} Corresponding author; e-mail:xingtieling@suda.edu.cn

stability and water repellency of cotton fabric treated with silica hydrosol (cotton_Si) and phosphorus-doped silica hydrosol (cotton_Si/P) were investigated.

Experimental analysis

Thermal gravimetric analysis

The thermal stability of the treated and untreated cotton fabrics was evaluated by thermal gravimetric analysis from 50-600 °C with the heating rate of 10 °C per minute in nitrogen atmosphere. Figure 1 illustrates the thermogravimetric analysis (TG) curves of pure cotton (cotton_control), cotton_Si, and cotton_Si/P. It can be seen that all of them had only one thermal

Figure 1. The TG curves of cotton samples

Table 1.	The	TG	data	of	cotton	sam	ples

Sample	T _{onset 10%} [°C]	Residue at 600 °C [%]		
Cotton_control	320	13.3		
Cotton_Si	296	11.4		
Cotton_Si/P	217	29.7		

degradation step in nitrogen atmosphere. The maximum mass loss of them involved two simultaneous conditions: the dehydration of glycosyl units and the deploymerization of such units into volatile species. In case of cotton Si/P, there was a fast decrease period around 200-300 °C, then the weight loss rate became slow and finally the weight residue remained the value of 29.7%, which was higher than cotton_control 13.3% and cotton_Si 11.4%, tab.1. This result indicated that phosphorus-doped silica coating contributed to the formation of physical char barrier which can prevent the heat transfer and limit the production of inflammable substances, then retarding the hydrolysis reactions. However, compared with cotton control, a slight sensitiveness was found for treated cotton [6] (e. g. 320 °C for cotton_control and 296 °C for cotton_Si, both of the values measured at $T_{\text{onset 10\%}}$). Additionally, cotton_Si did not present satisfactory result owing to the existence of flammable long chains (16 C) which would accelerate the degradation of cotton fabric.

Micro combustion performance

The flame behavior of cotton samples was measured via micro combustion calorimeter and limiting oxygen index instrument. The results of heat release capacity (HRC), peak of heat release rate (PHRR), total heat release (THR), and limiting oxygen index (LOI) value are presented in tab. 2. Taking cotton_Si/P into consideration, the LOI value reached 29.4% which was much higher than 18.0% of pure cotton, indicating the flame retardancy of cotton_Si/P was improved effectively. The micro combustion calorimeter (MCC) data also illustrated this characteristic, the THR value of cotton_Si/P was 3.8 kJ/g, which was lower than 12.1 kJ/g of cotton_control. In case of cotton_Si, a slight increase of HRC and PHRR value occurred compared with cotton_control. This result might be attributed to the breakage of SiO₂ film under high temperature causing the leakage of volatile species. However, in terms of THR value of cotton_Si, there was a 0.6 kJ/g lower than cotton_control. This phenomenon interpreted that the silicon as a flame retardant element still had certain positive influence on cotton flame retardancy.

864

Sample	HRC [J·g·K ⁻¹]	PHRR [W·g ⁻¹]	THR [kJ·g ^{−1}]	T _{max} [°C]	LOI [%]	Contact angle [°]
Cotton_control	235	235	12.1	369.7	18.5	-
Cotton_Si	268	268.7	11.5	337.5	17.4	129.4
Cotton_Si/P	82	81.46	3.8	261.1	29.4	134.6

Table 2. Combustion data and contact angle of cotton samples

Figure 2 presents the HRR curves of treated and untreated cotton fabrics. It can be seen that the PHRR of cotton_Si/P at 261 °C obviously decreased by 152.2 W/g compared with cotton_control at 369.7 °C. Besides, the ignition temperature of cotton_Si/P was lower than that of cotton_control which may be due to the addition of flammable long chain. However, the HRR of cotton_Si/P rapidly decreased after 261 °C, which also demonstrated the good flame retardancy of treated cotton. This was attributed to the existence of phosphorus-doped silica layer on cotton surface promoting formation to char and blocking the heat flue.

Figure 2. The HRR curves of cotton samples

Surface morphology and water status of cotton samples

The morphology of cotton samples before and after burning was observed by scanning electron microscope (SEM). Figure 3 shows six images: (a) cotton_control, (b) cotton_control burning, (c) cotton_Si, (d) cotton_Si burning, (e) cotton_Si/P, and (f) cotton_Si/P burning. It can be vividly seen that after burning cotton_control totally lost the original form and became ashes. In contrast, the cotton treated with phosphorus-doped silica sol completely retained its original structure. Furthermore, after burning the treated cotton emerged a rough cover which was considered as the char layer formed at high temperature with the existence of phosphorus and silicon on cotton surface. In case of cotton_Si, it still remained original shape after burning but it became thinner compared with cotton_Si/P burning, which revealed the synergistic effect of Si/P.

Figure 3. The SEM images of cotton samples

From fig. 4 and tab. 2, it can be seen that water drops remains on cotton surface modified by HDTMS (cotton_Si and cotton_Si/P, whose contact angle are 129.4° and 134.6°, respectively). This result confirmed that the addition of HDTMS had a positive effect on improving water repellency of cotton fabric.

Figure 4. Water status of treated and untreated cotton

Energy dispersive spectra test

Figure 5 shows the energy dispersive spectra of cotton samples. From fig. 5, it can be seen that after treated by phosphorus-doped silica hydrosol, P and Si elements can be found on cotton's surface. In the same way, Si element appeared on the cotton fabric after treated by pure silica hydrosol. In conclusion, the silica sol treated cotton fabric was successfully obtained.

Figure 5. The electronic data systems of treated and untreated cotton

Conclusion

Phosphorus-doped silica hydrosol could effectively improve the flame retardancy of cotton fabric. The composite sol presented a good synergy effect on promoting thermal stability. The HDTMS played a positive role on hydrophobicity of treated cotton fabric.

Acknowledgment

This work was supported by National Natural Science Foundation of China (No. 51203107), Natural Science Foundation of Jiangsu Province (BK20151242), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Qing Lan Project.

References

- Zhang, Q. H., et al., Combustion Properties of Cotton Fabric Treated by Boron Doped Silica Sol, Thermal Science, 19 (2015), 4, pp. 1347-1350
- [2] Mahltig, B., et al., Modified Silica Sol Coatings for Water-Repellent Textiles, Sol-Gel Science and Technology, 27 (2003), 1, pp. 43-52
- [3] Zhang, Q. H., et al., Flame Retardance and Thermal Stability of Wool Frabic Treated by Boron Containing Silica Sols, *Materials and Design*, 85 (2015), Nov., pp. 796-799
- [4] Xu, B., et al., Preparation of Superhydrophobic Cotton Fabrics Based on SiO₂ Nanoparticles and Zno Nanorod Arrays with Subsequent Hydrophobic Modification, Surface & Coating Technology, 204 (2010), 9, pp. 1556-1561
- [5] Laura, B., et al., Nanocrystalline TiO2 Coatings by Sol-Gel: Photocatalytic Activity on Pietra Di Noto Biocalcarenite, Sol-Gel Science and Technology, 75 (2015), 1, pp. 141-151
- [6] Alongi, J., et al., Sol-Gel Derived Architectures for Enhancing Cotton Flame Retardancy: Effect of Pure and Phosphorus-Doped Silica Phases, *Polymer Degradation and Stability*, 99 (2014), Jan., pp. 92-98

Paper submitted: November 10, 2015 Paper revised: December 30, 2015 Paper accepted: December 30, 2015

866