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A meshless method based upon radial basis function is utilized to approximate the 
singularly perturbed Burgers-Huxley equation with the viscosity coefficient ε. The 
proposed method shows that the obtained solutions are reliable and accurate. Con-
vergence analysis of method was analyzed in a numerical way for different small 
values of singularity parameter.
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Introduction

Non-linear partial differential equations usually arise in modeling of various phenom-
ena in most of the engineering and physical science branches. In the spatially homogeneous me-
dia, behavior of bifurcations and periodic trawling waves in excitable media are different. This 
difference cause by the strongly non-linearity and singular characteristics of the local reaction 
kinetics play significant role. Indeed, singular perturbation theory utilize the mentioned charac-
teristics of excitable media. We recall that KKP-Fisher [1] equation can be utilized successfully 
in modelling the diffusion phenomena which admits a traveling front solution connecting the 
two steady-states. Among possible generalizations of the Fisher equation, the Burgers-Huxley 
(BH) equation is most important one of the form: 

	
2

2 (1 )( ) = 0u u uu u u u
x x t

α β γ∂ ∂ ∂
− + + − − −
∂ ∂ ∂

	 (1)

It is well-known that a large class of physical phenomena such as the interaction be-
tween convection effects, reaction mechanism, and diffusion transports can be described by the 
BH equation. Moreover, the BH equations are successfully applied to describe some ecological 
models. Let us consider a population as breeding in a medium, then the corresponding dynam-
ical system is:

	 2= ( )tn kn m n n D nκ− + + ∆ 	

where ( )m n  is the mass of food and n is the size of the population per unit volume [2]. When 
0α = , the BH equation can be assumed as eq. (1) when the mass of food varies as 
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0 0(1( /) )m n m n n−= . More appropriate parabolic type of eq. (1) which characterized by the sin-
gular perturbation parameter, is singularly perturbed Burgers-Huxley (SPBH) equation. Actual-
ly, many standard numerical approaches are not converges for these types of equations and 
there are only few type of numerical methods that are successful for these problems. The SPBH 
equation with the initial and boundary conditions is:

	
2

2 (1 )( ) = 0u u uu u u u
x x t

ε α β γ∂ ∂ ∂
− + + − − −

∂ ∂ ∂
	 (2)

	 ( , ) (0,1) (0, ]X tx t D T∈ ≡ Ω ×Ω ≡ × 	 (3)

	 0( ,0) = ( ), xu x u x x∈Ω 	 (4)

	 0 1(0, ) = ( ), (1, ) = ( ), tu t s t u t s t t∈Ω 	 (5)

where α , β , and γ  are the parameters that take the values 0α ≥ , 0β ≥ , and (0,1)γ ∈ . Here 
(0,1]ε ∈  denotes the singular perturbation parameter. When 0ε → , an outflow boundary-layer 

is turned out in the neighborhood of right part of the lateral surface of the domain and the mod-
el can be investigated as a non-linear singularly perturbed problem. For the case > 0α , the 
solution of SPBH eq. (2) with small value of singular perturbation parameter, ε , demonstrates 
an exponential outflow boundary-layer in = {( , ) : = 1, }r tx t x tΓ ∈Ω . We recall that most of the 
standard numerical approaches can approximate the solution of BH equation without small 
singular perturbation parameter, ε. The cumbersome procedure arising in the numerical treat-
ment even of linear singularly perturbed equations is well known [3-5]. 

The BH equation has been investigated by many researchers in recent years. The 
approximate analytical solutions of BH equation were obtained by the homotopy analysis meth-
od [6]. Alos, some travelling wave solutions corresponding to the generalized BH equation are 
obtained within the first integral method in [7]. The variational iteration method is utilized in 
[8] to solve this equation without discretization. Liu et al. in [9] reported a class of multi-soliton 
solutions for the generalized BH equation. Kinks and periodic wave solutions were build in [10] 
by utilizing the tanh-coth method.

Wang et al. [11] obtained the solitary wave solution of generalized BH equation and 
multi-soliton solutions of this equation have been studied by Liu et al. [9]. Pseudospectral 
method and Darvishi’s preconditioning are utilized to approximate this equation by Javidi [12]. 
Khattak [13] applied the radial basis function (RBF) method to the generalized BH equation 
without singular perturbation parameter and Rathish Kumar et al. [14] approximated the SPBH 
equation with three-step Taylor-Galerkin method. Xie and Li [15] applied the combination 
of multiquadric (MQ)-RBF and high-order temporal approximation for the Burgers equation. 
Some recent papers in RBF are listed in [16-21].

Radial basis function approximation

In recent years, many researchers have investigated physical problems with RBF 
method. Published papers in this field and comparisons with other methods shows that RBF 
method is a powerful, reliable, and convergent method for most of the physical and engineering 
problems. In this paper we apply this method to approximate a singular problem which is of 
parabolic type and many approaches can not approximate this problem.
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Let us to write the unknown function ( )u X  as linear combination of M radial functions: 

	
=1

( ) ( ) ( ),
M

d
j j

j
u X X X X Rλ φ= + Ψ ∈Ω ⊂∑ 	 (6)

where 1 2= ( , , , )T
dX x x x  and d is the dimension of the problems domain. Moreover, in eq. (6), 

, = 1, ,j j Mλ   are unknown coefficients to be determined, jϕ  is RBF, and Ψ is an polynomial 
which impose to the problem in order to reduce the condition number of condition number of 
discretized system. Two major class of RBF are exist, i. e. infinitely smooth RBF and other ones 
which are not infinitely smooth at centers. The MQ, Gaussian (GA), inverse multiquadric 
(IMQ), inverse quadric (IQ) are in the first class and thin plate spline, cubic, linear are in the 
second one. In the current paper we use the MQ functions defined by: 

	 2 2( ) =j j jX r cφ + 	 (7)

where =j jr X X−  is the Euclidian norm and jc  is the free shape parameter. 
If d

qL  denotes the space of at most q order of d-variate polynomials, and supposing 
{ }1, ,d

q mL span p p=   concludes: 

	
=1

( ) = ( )
m

i i
i

X p XξΨ ∑ 	 (8)

where = ( 1 )!/[ !( 1)!]m q d d q− + − . 
So, to determine the unknown vector of coefficients 1( , , )Mλ λ  and 1( , , )mξ ξ , the 

collocation method can be used. Obviously, in addition to the M  equations extracted from 
collocating eq. (6), we need to m  equations to determine these unknown coefficients. We im-
pose the m  conditions for eq. (6) as: 

	
=1

( ) = 0, = 1, ,
M

i i j
j

p X i mξ∑  	 (9)

It can be noted that, for any partial differential operator ℘ of linear type, we have: 

	
=1

( ) ( ) ( )
M

j j
j

u X X Xλ φ℘ = ℘ +℘Ψ∑ 	 (10)

Imposing this equality into the original equation helps our to determine the unknown 
coefficients. 

Numerical approximation schemes

In order to approximate the SPBH equation, a new numerical scheme based upon a 
compact form of second-order finite difference method for time approximation and MQ-RBF 
for a spatial approximation, is constructed (scheme I). Notice that this scheme will be utilized 
in the numerical examples of this paper. Another approximate method (scheme II) based upon 
the method of line [22, 23] is also represented in detail for comparison. 

Scheme I

Let us to discretize the time derivative in eq. (2) using the first-order forward difference: 
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1

2 3(1 )( ) ( ) = 0, 0
n n

n n n n n n n n n
xx x

u uu u u u u u u u e nε α β βγ β γ β
τ

+ −
− + + − + − + + − ≥ 	 (11)

where τ  is the time step, = ( , * )nu u x n τ , and ne  is the truncation error given by: 

	 2= ( )
2

n n
tte u Oτ τ+ 	 (12)

Time differentiating of eq. (2) with respect to time variable, leads to a higher order 
compact finite difference scheme. Therefore, we have: 

	 2= 2 (1 ) 3 = 0tt xxt t x xt t t tu u u u uu uu u u uε α α β γ βγ β− − + + − − 	 (13)

and time discretizing of (13), we obtain: 

	

1 11 1

1 1
2

= 2 (1 )

3 ( ) ( )

n n n nn n n n
n n n nxx xx x x
tt x

n n n n
n

u u u uu u u uu u u u

u u u uu O

ε α α β γ
τ τ τ τ

βγ β τ
τ τ

+ ++ +

+ +

      − −− −
− − + + −      

      
   − −

− − +   
   

	 (14)

Substituting eq. (14) into eq. (12) concludes: 

	

1 1 1 1

1 2 1 2

= (1 )
2 2 2

3 ( ) ( )
2 2

n n n n n n n n n n n n
xx xx x x x

n n n n n

e u u u u u u u u u u u

u u u u u O

ε α α β γ

βγ β τ

+ + + +

+ +

       − − − − − + + − −       

   − − − − +    	 (15)

After substituting eq. (15) into eq. (11) we obtain our numerical scheme: 

	

2 1 1 1

2

31 ( ) =
2 2 2 2 2

1 ( )
2 2 2

n n n n n n n n
x xx x

n n n
xx

u u u u u u u u

u u u

ατ βγτ βτ ετ ατβτ βγτ

βγτ βτ ετ

+ + + + − + + − − +  
 = − + +  

	 (16)

Now, at each time level n, we approximate nu  by the modified MQ method introduced 
by Kansa [24]: 

	 2 2
1 2

=0
( ) = ( )

M
n n n

j j j M M
j

u x x x c xλ λ λ+ +− + + +∑ 	 (17)

where = / , = 0,1, ,jx j M j M . The jc  are shape parameters which affect the accuracy of solutions.
In order to determine the ( 3)M +  unknown coefficients 1, = 0,1, , 2,n

j j Mλ + +  in the 
( 1)thn +  time level, firstly two boundary conditions (11) are used:

	 1 1
0 0 1 1( ) = ( ), ( ) = ( )n nu x s t u x s t+ + 	 (18)

and then ( 1)M +  distinct points ˆ = /( 2)jx j M +  in (0,1) using eq. (16).

Scheme II

In this approximation method, spatial derivatives are firstly approximated using the 
RBF method, and the governing equation is reduced to a system of non-linear ODE. Then, the 
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resulting system of ODE have been solved using the fourth-order Runge-Kutta (RK4). More-
over, a function ( , )u x t  can be approximated by:

	
=1

( , ) = ( ) = ( )
M

M T
j j

j
u x t x xλ φ λΦ∑ 	 (19)

where M  is the total number of distinct points , = 1,2, ,jx j M  in [a, b], and: 

	 1 2 1 2( ) = [ ( ), ( ), ..., ( )] , = [ , ,..., ]T T
M Mx x x xφ φ φ λ λ λ λΦ 	 (20)

Let ( , ) = ( ) = ( , )M
i i iu x t u t u x t , then eq. (19) becomes: 

	 =A Uλ 	 (21)
where 1 2= [ ( ), ( ),..., ( )]T

MU u t u t u t , and the coefficient matrix: 

	

1 1 1 2 1 1

1 2 2 2 22

1 2

( ) ( ) ( ) ( )
( ) ( ) ( )( )

= =

( ) ( ) ( )( )

T
M

T
M

T
M M M MM

x x x x
x x xx

A

x x xx

φ φ φ
φ φ φ

φ φ φ

 Φ  
   Φ   
   
   
 Φ   





   





	

From eq. (19) and eq. (21) we can write: 

	 1( , ) = ( ) = ( )M Tu x t x A U x U−Φ Λ 	 (22)

where 1
1 2( ) = ( ) = [ ( ), ( ),..., ( )]T

Mx x A x x x−Λ Φ Λ Λ Λ . From the RBF approximation we obtain:

	 1

=1
( , ) ( , ) = ( ) = ( ) = ( ) = ( )

M
M T T

j j
j

u x t u x t x x x A U x Uλ ϕ λ −≈ Φ Φ Λ∑ 	 (23)

Applying eq. (23) to eq. (2), and collocating at the node ix , we have: 

	
2

2

d ( ) ( ) (1 )( ) = 0, = 1,2, ,
d

i
i i i i i i

u x u x u u u i M
t x x

ε α β γ∂ Λ ∂Λ
− + − − −

∂ ∂
 	 (24)

This system of equations can be written in the compact form: 

	 2 3d ( ) *( ) (1 ) = 0
d xx x
U U U U U U U
t

ε α βγ β γ β− Λ + Λ + − + + 	 (25)

where * denotes the two vectors component-by-component multiplication. Equation (25) can 
also be written: 

	 d = ( )
d
U U
t

Ξ 	 (26)

where 

	 2 3( ) = ( ) *( ) (1 )xx xU U U U U U Uε α βγ β γ βΞ Λ − Λ − + + − 	 (27)

Related initial condition is 0
0 1 0 2 0= [ ( ), ( ), , ( )]T

MU g x g x g x , and from eq. (5), we can 
write: 

	 1 1 2( ) = ( ), ( ) = ( )Mu t f t u t f t 	 (28)
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Equation (26) can be solved using the RK4. Also, solving this system of non-linear 
ODE, concludes the unknown coefficients λ  by using the relationship shown in eq. (21). 

Numerical examples

Here we present two examples with different initial and boundary conditions to illus-
trate the power and convergence of two explained schemes in the previous section.

Example 1

Here we discuss the following BH equation without the singularity parameter: 

	
2

2 (1 )( ) = 0u u uu u u u
t x x

α β γ∂ ∂ ∂
+ − − − −

∂ ∂ ∂
	 (29)

with conditions:

	 1( ,0) = tanh( ),
2 2 xu x A x xγ γ
+ ∈Ω 	 (30)

and:

	 [ ]1 2 1 2(0, ) = tanh( ), (1, ) = tanh (1 ) ,
2 2 2 2 tu t A A t u t A A t tγ γ γ γ
+ − + − ∈Ω 	 (31)

The corresponding exact solitary wave solution [25, 26] is given by: 

	 [ ]1 2( , ) := tanh ( )
2 2

u x t A x A tγ γ
+ − 	 (32)

where 

	
( )2

2

1 2

(2 ) 88
= , =

8 2 4
A A

γ α α βα α β γα − − + +− + +
− 	 (33)

Numerical results with the parameters 
= 0.5α , = 1β , and = 0.001γ  are reported in 

tab. 1. It can be seen from this table that results 
of scheme I are more satisfactory than the sec-
ond one.

Example 2

This example is an SPBH equation de-
fined by: 

	
2

2 = (1 )( 0.5)u u uu u u u
t x x

ε∂ ∂ ∂
+ − − −

∂ ∂ ∂
	 (34)

with sinusoidal initial condition: 

	 ( ,0) = sin( ), xu x x xπ ∈Ω 	 (35)

and: 

	 (0, ) = 0, (1, ) = 0, tu t u t t∈Ω 	 (36)

Table 1. Comparison of numerical and exact 
solutions with = 10M , = 1T , and = 0.1τ  for 
example 1 with uniform mesh at various mesh 
points

xi Exact solution Scheme I Scheme II
0.1 6.370e–004 6.355e–004 5.148e–004
0.2 6.506e–004 6.436e–004 5.296e–004
0.3 6.640e–004 6.530e–004 5.444e–004
0.4 6.771e–004 6.637e–004 5.590e–004
0.5 6.889e–004 6.757e–004 5.736e–004
0.6 7.024e–004 6.890e–004 5.880e–004
0.7 7.147e–004 7.035e–004 6.023e–004
0.8 7.266e–004 7.192e–004 6.164e–004
0.9 7.382e–004 7.360e–004 6.301e–004
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In this example we utilize the major method of this paper (scheme I) to approximate 
the solution of problem. Let us to take = 8M , = 1T , and = 0.1τ  and we multiply M  by 2. The 
exact solution of SPBH equation for small values of the viscosity coefficient, ε , is not avail-
able. Hence, to show the performance of this scheme at low singular perturbation parameter, ε , 
we use to estimate the pointwise error: 

	 , 2=| ( , ) ( , ) |M M n M n
i ie u x t u x tτ

ε − 	 (37)

Moreover, the maximum nodal error for 
each ε , have the following form: 

	 , ,

,
= maxM M

i n
E eτ τ
ε ε 	 (38)

In tab. 2, maximum nodal errors for different 
values of ε  up to 82− , and different knots have been 
demonstrated. Indeed, this table shows that maxi-
mum nodal error decreases when point numbers 
increase which this fact demonstrate the numerical 
stability of current method. Also, tab. 3 shows the 
comparison of obtained results 
with current method and mono-
tone finite difference scheme 
[27] for different values of the 
viscosity coefficient. Results of 
our method are more beater 
than the reported results in ref-
erence [28], especially for 
small values of singularity pa-
rameter. Finally, figs. 1-4 
demonstrate approximate solu-
tions of SPBH equation in ex-
ample 2 with 0 6 12= 2 , 2 , 2ε − − , and 242− , respectively. Figures of approximate solutions in x-di-
rection and different time values are plotted beside of each approximate solution in 3-D to show 
the behave of singularity parameter in the problem.

Table 2. Maximum nodal errors with = 1T  
and = 0.1τ  for Example 2 with uniform 
mesh at various singular perturbation 
parameters

ε M = 4 M = 6 M = 8
20 1.901e–05 3.767e–06 1.017e–07
2–2 2.360e–04 1.110e–04 3.124e–05
2–4 1.370e–02 1.710e–03 1.22e–04
2–6 2.098e–01 1.987e–02 8.081e–03
2–8 5.474e–01 2.294e–01 1.725e–02

Table 3. Comparison of maximum pointwise errors for Example 2 
with the parameters = 1α , = 1β , and = 0.5γ  on uniform mesh

ε M = 16  
(Our method)

M = 16  
[28]

M = 32  
(Our method)

 M = 32  
[28]

20 5.3220e–08 6.8456e–06 1.6764e–09 4.0455e–07
2–2 4.7534e–06 1.0777e–03 5.7923e–07 5.8450e–04
2–4 3.5695e–05 5.4069e–03 2.5473e–06 1.3862e–03
2–6 6.6293e–04 3.7340e–01 3.0004e–05 7.3680e–02
2–8 2.3230e–03 1.3865 9.3234e–04 1.1618
2–10 1.9313e–02 1.6736 8.3640e–03 1.9856

(a) (b)
x

t

x

t = 1, 0.4, 0.2, 0.1

0.0
0.0

Figure 1. Approximate profile of Example 2 with = 10M , = 0.01τ , and 0= 2ε  
(for color image see journal web site)
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(a) (b)

x

t

x

t = 1, 0.7, 0.5, 0.3, 0.1

0.0
0.0

Figure 2. Approximate profile of Example 2 with = 10M , = 0.01τ , and −6= 2ε   
(for color image see journal web site)

Figure 3. Approximate profile of Example 2 with = 10M , = 0.01τ , and −12= 2ε   
(for color image see journal web site)

(a) (b)

x

t

x

t = 1, 0.7, 0.5, 0.3, 0.1

0.0
0.0

Figure 4. Approximate profile of Example 2 with = 10M , = 0.01τ , and −24= 2ε   
(for color image see journal web site)

(a) (b)

x

t

x

t = 1, 0.7, 0.5, 0.3, 0.1

0.0
0.0
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Conclusion

In this manuscript we suggest a powerful and efficient method to solve the SPBH 
equation using a second-order compact finite difference scheme for time discretization and 
MQ-RBF for spatial approximation. Convergence of the proposed method was demonstrated 
for different values of singularity parameter. High accuracy and efficiency of the method were 
demonstrated by data presented in our tables and figures.
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